Coloring Random Graphs

A Short and Biased Survey

Lefteris M. Kirousis

RA Computer Technology Institute

and

Department of Computer Engineering and Informatics, University of Patras
The k-colorability problem (k-COL)

Given a graph $G = (V, E)$ decide whether its vertices can be colored with at most k colors so that no adjacent vertices get the same color.
The List Coloring Algorithm

Input: A graph G together with a list of possible k colors for each of its vertices.

- At every step, choose a color from a list and assign it to its vertex.
- Delete this vertex and also delete the selected color from neighboring vertices.
- If the graph becomes empty, return “yes”; if a vertex with an empty list appears, return “no”.
- Vertices with one element in their list are given priority.
The greedy list coloring algorithm: Always choose a vertex with the least possible number of colors in its list. Ties are broken arbitrarily.

The Brelaz heuristic, 1979: At ties, choose a vertex with the largest number of yet uncolored neighbors.
The Erdős–Rényi model

- $G_{n,p}$: Each edge is independently selected with probability p to be included in the graph (the number of edges is a random variable).
- $G_{n,m}$: Exactly m edges are uniformly and independently selected to be included in the graph.
The Erdős–Rényi model II

- We consider *sparse* graphs, i.e. graphs in $G(n, p)$ where $p = d/n$ for some constant d, or alternatively in $G(n, m)$, $m = dn/2$.

- Expected number of edges in $G(n, p = d/n)$ is $\sim dn/2$ and therefore expected “average” degree is d. The value $d/2$ is known as the *edge-density*.

- The two models although formally non-equivalent, they behave in a similar way.
Phase transition — non-rigorous results

[Mitchell et al. 1992] and other groups by simulation experiments:

General observation: for each fixed k (amenable to experimentation), there is a threshold average degree d_k^* such that

- If $d < d_k^*$, then a random graph with average degree d is a.a.s. k-colorable, while
- if $d > d_k^*$ then such a graph is a.a.s. non-k-colorable.

Note: “a.a.s.” means with probability approaching 1 asymptotically with the number of vertices.
Phase transition — continued

- Analytic (but non-rigorous) verification of the previous experimental results by methods of Statistical Physics.
- For \(k = 3 \), both experiments and analytic techniques suggest that \(d_3^* \approx 4.69 \).
The Achlioptas–Friedgut theorem

Theorem *There is a sequence* $d^*(n)$ *such that* $\forall \epsilon$:

- *A random graph with average degree* $d^*(n) - \epsilon$ *is a.a.s. 3-colorable.*
- *A random graph with average degree* $d^*(n) + \epsilon$ *is a.a.s. non-3-colorable.*

In other words, the transition interval can be made arbitrarily thin (sharp transition).
The Achlioptas–Friedgut theorem

Theorem There is a sequence $d^*(n)$ such that $\forall \epsilon$:

- A random graph with average degree $d^*(n) - \epsilon$ is a.a.s. 3-colorable.
- A random graph with average degree $d^*(n) + \epsilon$ is a.a.s. non-3-colorable.

In other words, the transition interval can be made arbitrarily thin (sharp transition).

- Still open question: Does $d^*(n)$ converge? If yes, to what value?

Corollary Given d, if for random graphs G of average degree d, $\Pr[G \text{ is 3-col.}] > \epsilon$, finally for all n, then for random graphs G of average degree any $d' < d$, $\Pr[G \text{ is 3-col.}] \rightarrow 1$.
Upper bounds

The upper bound results are expressed in terms of the edge-density \(\frac{d}{2} \) rather than the average degree \(d \). Because the \(G(n, m) \) model works better in this case.

Reminder: Experimentally, the putative threshold occurs for edge-density 2.35 (average degree 4.69).

- First: 2.71 — observed by several researchers independently – Markov’s inequality

- Current best: 2.427 Dubois and Mandler (2002) – typical graphs plus the decimation technique
Upper bounds

The upper bound results are expressed in terms of the edge-density \((d/2)\) rather than the average degree \(d\). Because the \(G(n, m)\) model works better in this case.

Reminder: Experimentally, the putative threshold occurs for edge-density 2.35 (average degree 4.69).

- First: 2.71 — observed by several researchers independently – Markov’s inequality

- Current best: 2.427 Dubois and Mandler (2002) – typical graphs plus the decimation technique

In between the above less-than-three-tenths improvement, several results that established intermediate values by Łuczak; Achlioptas and Molloy; Kaporis et al. and other groups
The basic upper bound technique

Let G be a random graph and $\mathcal{C}(G)$ the random class of its legal 3-colorings. Then

$$\Pr[G \text{ is 3-col.}] = \Pr[|\mathcal{C}(G)| \geq 1] \leq \mathbb{E}(|\mathcal{C}(G)|).$$

Since $\mathbb{E}(|\mathcal{C}(G)|)$ is easy to compute. So we find the values of edge-density for which it vanishes and thus we get a trivial upper bound, namely 2.71.

But why experiments suggest $d_3^* \simeq 2.35$?

A class of graphs with small probability but with many legal 3-colorings contributes too much to the expectation $\mathbb{E}(|\mathcal{C}(G)|)$ (Lottery paradox).
Improvements of the first moment

- Make $C(G)$ (the set of all legal 3-colorings) “thinner”, so that the “unrealistic” expectation of the cardinality of $C(G)$, due to the Lottery paradox, gets smaller.

- Consider *rigid* 3-colorings, i.e. colorings where any change of color to a higher one (in the RGB ordering) destroys the legality (Achlioptas and Molloy, further improvement by Kaporis, Kirousis et al.)

- Method first introduced for SAT by Kirousis et al., 1997.
Examine not the whole space of possible graphs, but a subset of it comprised of graphs that:

- are *typical* with respect to their degree sequence (Poisson) and
- *(the decimation technique)* have been repetitively depleted of vertices of degree 2 or less, as these vertices do not interfere with the colorability (Dubois and Mandler).
Algorithms for lower bounds

Let d_k^- denote the lower bound for d_k^* that we try to compute.

Consider list coloring or an improvement *without backtracking*, i.e. if failure is reported after the choice of a color, this failure is considered permanent).

Prove that for $d < d_k^-$, the coloring algorithm a.a.s. succeeds.

The more sophisticated the heuristic is, the more difficult or impossible its probabilistic analysis is.
Algorithmic lower bounds for 3-COL

- Achlioptas and Molloy (1997), and then Achlioptas and Moore (2004) analyzed the plain list coloring algorithm (the Brelaz heuristic respectively).

The best today lower bound for 3-COL: average degree 4.03 (Recall: experimental value of putative threshold: 4.69).

- Progress in the case of lower bounds is much slower and the techniques more involved (compared with upper bounds).

- Also, there is strong experimental evidence that the technique of analyzable local search algorithms cannot overcome a barrier smaller than the value of the experimental threshold (4.69). Why?
The case of general k-Col

By the first moment method: $d_k^* < 2k \ln k$.

By a result of Łuczak: $d_k^* > 2k(1 - \epsilon) \ln k$, $\forall \epsilon > 0$ and for large enough k.

So $d_k^* \sim 2k \ln k$ (the asymptotic is w.r.t k).

Also, by another result of Łuczak: the chromatic number of graphs in $G(n, p = d/n)$ ranges a.a.s. within a window of only two possible integer values.

Alas, Łuczak gives no information on these two values, neither do the above asymptotics of the threshold d_k^*.

Main task: Make the asymptotics of d_k^* finer so that the two possible values of the chromatic number are found.
The geometry of k-colorings

For a random graph G with a given av. degree d, consider the space of all k-color assignments (legal or not) to the vertices of G. Then:

- For d below a certain value, all legal k-colorings form a unique cluster in this space (with respect to the Hamming distance).
- As the average degree increases, the clusters break down into exponentially many.
- Moreover, as d increases, exponentially many clusters correspond to color assignments that are illegal in a locally minimal way (i.e. any change in the colors of a few vertices gives rise to more illegally colored edges).
Beyond the clustering point, sampling colorings becomes hard.

Therefore no easily analyzable local search algorithms.

Scant hopes to sufficiently improve the lower bound of d^*_k by algorithmic techniques.

What is the way out?

Conclusion: Non-algorithmic approaches for lower bounds should be tried.
The second moment method

Let X be a non-negative variable (usually a counting variable) that depends on n.

- Lottery Paradox: As n grows large $\mathbb{E}(X)$ may also grow large, but yet $\Pr[X > 0]$ may approach zero.

- However if $\mathbb{E}(X^2)$ does not approach infinity too fast compared to $\mathbb{E}(X)$, then it may turn that $\Pr[X > 0]$ stays away from zero. Formally:

 $$\Pr[X > 0] \geq \frac{(\mathbb{E}(X))^2}{\mathbb{E}(X^2)}.$$
The solution

- Achlioptas and Naor (2004). Let k_d be the smallest integer k such that $d < 2k \ln k$. Almost all $G_{n,p=d/n}$ random graphs have chromatic number either k_d or $k_d + 1$.

- Method of Proof: Second moment where X counts the number of balanced k-colorings of $G_{n,p=d/n}$.

- Balanced: each color is assigned to an equal number of vertices.

- Difficulty: The second moment of X turns out to be a sum of exponential terms. Locating the term with the largest base, which essentially gives the value of the sum, proved out to be a difficult task.
Random regular graphs

Different model from the Erdős–Rényi. Special case of the Newman model of random graphs with a preassigned degree sequence, intended to model large complex graphs.

Progress is much slower.

- Achlioptas and Moore (2004): The chromatic number of random regular graphs of degree d a.a.s. ranges in $\{k_d, k_d + 1, k_d + 2\}$, where k_d is the smallest integer k such that $d < 2k \ln k$.

- Shi and Wormald (2004): Algorithmic analogous results for values of d up to 10.

- Also, almost all 4-regular graphs have chromatic number 3, and

- almost all 6-regular graphs have chromatic number 4.
Survey Propagation (Krząkała et al., 2004): almost all 5-regular graphs have chromatic number 3.

The solution space of 3-colorings of 5-regular is on the edge of the clustering phase. Therefore, rigorously analyzable algorithmic techniques are expected not to work.

Until recently, the only rigorous result for 5-regular graphs is that almost all of them have chromatic number 3 or 4.

Second Moment: Fails when X counts 3-colorings, even if they are balanced.
By linearity of expectation and by summing over pairs of 3-colorings we have:

\[\mathbb{E}(X^2) = \sum_i E_i P_i \]

where \(E_i \) is the number of pairs of color assignments with a given pattern of color assignments (characterized by a parameter \(i \)) (entropy factor) and \(P_i \) is the probability that a fixed pair of color assignments with pattern \(E_i \) is legal (energy factor).
Explanation of failure continued

- The term $E_i P_i$ that is equal (ignoring sub-exponential factors) to $(\mathbb{E}(X))^2$ is the \textit{barycentric} term that corresponds to a completely symmetric pattern.

- But unfortunately unlike the case of $G(n, p)$ graphs, the barycentric term is not the prevalent one in the sum.

- Because there is a slight bias towards pairs of colorings that give the same color to a vertex.
How to eliminate this bias?

- Consider colorings where each vertex has neighbors with both the other two legal colors (rainbow or panchromatic colorings).

- Díaz, Kaporis, Kirousis, Kemkes, Pérez and Wormald (2009): 5-regular graphs are 3-colorable a.a.s.

- Method of proof: Apply second moment to the number of rainbow, balanced 3-colorings on 5-regular graphs.

- Result: A 5-regular graph is 3-colorable with positive probability independent of its size.
High probability

Pad up this probability to 1 (asymptotically).

Technique: Using the previous result that:

$$\Pr[X > 0] \geq \frac{(\mathbb{E}(X))^2}{\mathbb{E}(X^2)} \sim \text{constant}$$

show that:

$$\Pr_Y[X > 0] \geq \frac{(\mathbb{E}_Y(X))^2}{\mathbb{E}_Y(X^2)} \sim 1,$$

by conditioning over the number of small cycles of the graph.
Thank you