
A Simple and Efficient
Union-Find-Delete

Algorithm

Amir Ben-Amram, Simon Yoffe

ACAC
Athens 2010

Union Find
data structure

Maintain a collection of disjoint sets under the
operations:

Makeset(a) – create new set for element a

Union(A, B) – destructive union of sets A and B

Find(a) – find the set containing a

Union Find Delete
data structure

Maintain a collection of disjoint sets under the
operations:

Makeset(a) – create new set for element a

Union(A, B) – destructive union of sets A and B

Find(a) – find the set containing a

Delete(a) – remove a from its containing set

The classic data structure

Represent each set A as rooted tree TA

Union links the root of the shallower tree to the
root of the taller tree (by rank)

0

5 3

9

7

6
1

Rank 0 Rank 0 Rank 0

Rank 0

Rank 2
Rank 1

The classic data structure

Represent each set A as rooted tree TA

Union links the root of the shallower tree to the
root of the taller tree (by rank)

0

5 3

9

7

6
1

O(1)Rank 0 Rank 0 Rank 0

Rank 0

Rank 2
Rank 1

Find climbs from the provided element up to
the root and returns the root as the set
identifier

0

5
3

9

7

6
1

Find climbs from the provided element up to
the root and returns the root as the set
identifier

0

5
3

9

7

6
1

O(log(n))

To increase the amortized efficiency of the find
operation we perform path compression

0

5
3

9

7

6
1

Link all the nodes in the path directly to the root

To increase the amortized efficiency of the find
operation we perform path compression

0

5
3

9

7

6
1

O(α(n)) amortized

Link all the nodes in the path directly to the root

These results go back to...

• R.E. Tarjan. Efficiency of good but not linear
set union algorithm. Journal of the ACM,
22:215-225, 1975

• R.E. Tarjan and Jan van Leeuwen. Worst-case
analysis of set union algorithms. Journal of the
ACM, 31(2):245-281, 1984

• These works did not consider delete

Purpose of this talk:

Describe a simple and efficient way to
incorporate the delete operation.

Goals:

- Delete operation in constant time

- Other operations preserve their current
efficiency (time and space)

Applications
• Implementing meldable priority queues (Haim

Kaplan, Nira Shafrir, and Robert Endre Tarjan SODA
2002)

• Implementing uniqueness and ownership transfer in
the universe type system (Yoshimi Takano 2007)

Delete operation

Deleting a leaf node is easy (constant time)

A problem arises when trying to delete a non-leaf
node

0

5 3

0

5 3

Delete operation

Deleting a leaf node is easy (constant time)

A problem arises when trying to delete a non-leaf
node

0

3

0

5 3

5

0

Possible Solution

Find a leaf, switch the elements between the
nodes and delete the leaf

0

5 3

5

0

Possible Solution

Find a leaf, switch the elements between the
nodes and delete the leaf

3

5

Possible Solution

Find a leaf, switch the elements between the
nodes and delete the leaf

3

How to find a leaf?
The answer is that not that simple

Problems in Finding a Leaf

• The straight-forward idea is to maintain a leaf
collection

• Each node should have some kind of a link to
the leaf collection

• The problem is how to handle those links
during updates

• The straight-forward ideas don’t work in
constant time

Previous Work

• H. Kaplan, N. Shafrir, R.E. Tarjan: Union-Find
with deletions. SODA 2002

• S. Alstrup, I.L. Gørtz, T. Rauhe, M. Thorup,
U. Zwick: Union-Find with Constant Time
Deletions, ICALP 2005

• The solution instead of finding a leaf uses
vacant nodes (empty nodes)

• Constant time "tidy" and "local compress"
operations for preserving efficiency

• Controlling the amount of the vacant nodes

0

5
3

9

7

6
1

• The solution instead of finding a leaf uses
vacant nodes (empty nodes)

• Constant time "tidy" and "local compress"
operations for preserving efficiency

• Controlling the amount of the vacant nodes

0

5
3

9

7

6

• The solution instead of finding a leaf uses
vacant nodes (empty nodes)

• Constant time "tidy" and "local compress"
operations for preserving efficiency

• Controlling the amount of the vacant nodes

0

5
3

9

7

6

• The solution instead of finding a leaf uses
vacant nodes (empty nodes)

• Constant time "tidy" and "local compress"
operations for preserving efficiency

• Controlling the amount of the vacant nodes

0

5
3

9

7

6

Our Solution
Finding a leaf in a constant worst-case time

To accomplish that we extend the data structure
as follows:

• Each node holds an ordered doubly linked list
of its children

• The root holds a doubly linked list of a non leaf
children

• Each tree holds a cyclic doubly linked list of the
tree nodes in right-to-left DFS order

Tree Nodes in DFS Order

The predecessor of a given node can be one of
two:

• The parent node in the tree

5

0

0

5 3

DFS
0
3
5

• The leftmost leaf in the sub tree of the right
sibling of the given node

0

5 3

9

7

6

1

8

DFS
7
9
1
6
8
0
3
5

• The predecessor is a parent or a leaf

5

0

0

5 3

DFS
0
3
6
4
8
5

• If it is a parent we can examine the left sibling
of the node

5

0

0

5 3

68 4

68 4

DFS
0
3
6
4
8
5

Full or Reduced Trees

We maintain certain invariants to achieve the
desired efficiency. Every tree will be either

• Full – each node is either a leaf of rank 0, or a
parent with at least three children

0

5 3

9

7

6

1

82 4

Rank 0

Rank 0Rank 0

or

• Reduced – a single node of rank 0,

• or a root of rank 1 with leaves of rank 0

0
Rank 0

or
0 9

7

13 5
Rank 0 Rank 0 Rank 0

Rank 1

Implementing Union

One of the trees is of size < 4 :

Hang all its nodes on the other root

0

5
3

9

7

61

TATB

Implementing Union

One of the trees is of size < 4 :

Hang all its nodes on the other root

0

5
3

9

7

61

TA
Rank 0

Rank 0
Rank 0

Both trees are of size ≥ 4 :
Union by rank
Update our additional lists

0

5 3

9

7

61

TA TB

2

DFS
7
9
6
1

DFS
0
3
2
5

DFS
7
0
3
2
5
9
6
1

Both trees are of size ≥ 4 :
Union by rank
Update our additional lists

0

5 3

9

7

61

TA

2

Implementing Find
• Instead of path compression we use path

splitting [Tarjan and van Leeuwen]

• Each node in the path is moved from its
parent to its grand-parent

• If the parent now has less than three children
we move them as well

0

5 3

9

7

6

1

82 4

Implementing Find
• Instead of path compression we use path

splitting [Tarjan and van Leeuwen]

• Each node in the path is moved from its
parent to its grand-parent

• If the parent now has less than three children
we move them as well

0

5 3

9

7

6

1

82 4

Implementing Find
• Instead of path compression we use path

splitting [Tarjan and van Leeuwen]

• Each node in the path is moved from its
parent to its grand-parent

• If the parent now has less than three children
we move them as well

0

5 3

9

7

6

1

82 4

DFS
7
1
6
x
2
3
5
l

…

Fixing The DFS Order

• If node x has a left sibling (l), it means that the
sub tree that starts at x is represented in the
DFS order by segment [x, l)

• It is simple to disconnect the segment and insert
it before the parent of x in the DFS order

7

6

1

l x

25 3

DFS
7
1
6
l

…

Fixing The DFS Order

• If node x has a left sibling (l), it means that the
sub tree that starts at x is represented in the
DFS order by segment [x, l)

• It is simple to disconnect the segment and insert
it before the parent of x in the DFS order

7

6

1

l

DFS
7
x
2
3
5
1
6
l

…

Fixing The DFS Order

• If node x has a left sibling (l), it means that the
sub tree that starts at x is represented in the
DFS order by segment [x, l)

• It is simple to disconnect the segment and insert
it before the parent of x in the DFS order

7

6

1

l 23

x

5

• If node x is the leftmost child of its parent,
we do not have to change the DFS order
at all

7

6

1

8

23

x

5

DFS
7
1
6
8
x
2
3
5
…

• If node x is the leftmost child of its parent,
we do not have to change the DFS order
at all

7

6

1

8

23

x

5

DFS
7
1
6
8
x
2
3
5
…

Implementing Delete

Tree is of size ≤ 4 :

Rebuild the tree in to reduced from

9

7

6
1

Implementing Delete

Tree is of size ≤ 4 :

Rebuild the tree in to reduced from

7

6
1

Tree of size > 4 :

Find a leaf, switch elements with the leaf node

Delete the leaf node

Update additional lists

If the tree is not reduced as the result of the
deletion apply local rebuild to the parent of
the deleted node (or the root)

If node y is not the root, move 2 leftmost children
of y to its parent

Local Rebuild

7

6

1

8

23

y

5

If less than 3 children remain, move the rest of
the children as well

If node y is not the root, move 2 leftmost children
of y to its parent

Local Rebuild

7

6

1

8

23

y

5

If less than 3 children remain, move the rest of
the children as well

If node y is not the root, move 2 leftmost children
of y to its parent

Local Rebuild

7

6

1

8

23

y

5

If less than 3 children remain, move the rest of
the children as well

If node y is the root and node c is a non-leaf child
of y, move three leftmost children of c to y

y
c

2351

If less than 3 children remain, move the rest of
the children as well

If node y is the root and node c is a non-leaf child
of y, move three leftmost children of c to y

y
c

2351

If less than 3 children remain, move the rest of
the children as well

If node y is the root and node c is a non-leaf child
of y, move three leftmost children of c to y

y
c

2351

If less than 3 children remain, move the rest of
the children as well

Analysis

Our asymptotic worst case and amortized
complexity is similar to that of Alstrup et al.

We actually reuse parts of their analysis.

The notable difference is a conceptual
simplification (no vacant nodes) and a much
simpler “local compression”

+ a simplified analysis (with smaller constant
factors)

Future Research

• Can we find a leaf in the sub tree of the node
requested for deletion?

• Can we reduce the memory usage of the data
structure?

E

Thank You

