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Union Find 
data structure

Maintain a collection of disjoint sets under the 
operations:

Makeset(a) – create new set for element a

Union(A, B) – destructive union of sets A and B

Find(a) – find the set containing  a



Union Find Delete
data structure

Maintain a collection of disjoint sets under the 
operations:

Makeset(a) – create new set for element a

Union(A, B) – destructive union of sets A and B

Find(a) – find the set containing  a

Delete(a) – remove  a from its containing set



The classic data structure

Represent each set A as rooted tree TA

Union links the root of the shallower tree to the 
root of the taller tree (by rank)
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The classic data structure

Represent each set A as rooted tree TA

Union links the root of the shallower tree to the 
root of the taller tree (by rank)
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Find climbs from the provided element up to 
the root and returns the root as the set 
identifier
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Find climbs from the provided element up to 
the root and returns the root as the set 
identifier
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To increase the amortized efficiency of the find 
operation we perform path compression
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To increase the amortized efficiency of the find 
operation we perform path compression
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These results go back to...

• R.E. Tarjan. Efficiency of good but not linear 
set union algorithm. Journal of the ACM, 
22:215-225, 1975

• R.E. Tarjan and Jan van Leeuwen. Worst-case 
analysis of set union algorithms. Journal of the 
ACM, 31(2):245-281, 1984

• These works did not consider  delete



Purpose of this talk:

Describe a simple and efficient way to 
incorporate the delete operation.

Goals:

- Delete operation in constant time

- Other operations preserve their current 
efficiency (time and space)



Applications
• Implementing meldable priority queues (Haim

Kaplan, Nira Shafrir, and Robert Endre Tarjan SODA 
2002)

• Implementing uniqueness and ownership transfer in 
the universe type system (Yoshimi Takano 2007)



Delete operation

Deleting a leaf node is easy (constant time)

A problem arises when trying to delete a non-leaf 
node
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Possible Solution

Find a leaf, switch the elements between the 
nodes and delete the leaf
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5

Possible Solution

Find a leaf, switch the elements between the 
nodes and delete the leaf

3

How to find a leaf?
The answer is that not that simple



Problems in Finding a Leaf

• The straight-forward idea is to maintain a leaf 
collection

• Each node should have some kind of a link to 
the leaf collection

• The problem is how to handle those links 
during updates

• The straight-forward ideas don’t work in 
constant time 



Previous Work

• H. Kaplan, N. Shafrir, R.E. Tarjan: Union-Find 
with deletions. SODA 2002

• S. Alstrup, I.L. Gørtz, T. Rauhe, M. Thorup, 
U. Zwick: Union-Find with Constant Time 
Deletions, ICALP 2005



• The solution instead of finding a leaf uses 
vacant nodes (empty nodes)

• Constant time "tidy" and "local compress" 
operations for preserving efficiency

• Controlling the amount of the vacant nodes
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• The solution instead of finding a leaf uses 
vacant nodes (empty nodes)

• Constant time "tidy" and "local compress" 
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Our Solution
Finding a leaf in a constant worst-case time

To accomplish that we extend the data structure 
as follows:

• Each node holds an ordered doubly linked list 
of its children

• The root holds a doubly linked list of a non leaf 
children

• Each tree holds a cyclic doubly linked list of the 
tree nodes in right-to-left DFS order



Tree Nodes in DFS Order

The predecessor of a given node can be one of 
two:

• The parent node in the tree
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• The leftmost leaf in the sub tree of the right 
sibling of the given node

0

5 3

9

7

6

1

8

DFS
7
9
1
6
8
0
3
5



• The predecessor is a parent or a leaf

5

0

0

5 3

DFS
0
3
6
4
8
5

• If it is a parent we can examine the left sibling 
of the node
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Full or Reduced Trees

We maintain certain invariants to achieve the 
desired efficiency. Every tree will be either

• Full – each node is either a leaf of rank 0, or a 
parent with at least three children
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or

• Reduced – a single node of rank 0, 

• or a root of rank 1 with leaves of rank 0

0
Rank 0

or
0 9

7

13 5
Rank 0 Rank 0 Rank 0

Rank 1



Implementing Union

One of the trees is of size < 4 :

Hang all its nodes on the other root
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Implementing Union

One of the trees is of size < 4 :
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Both trees are of size ≥ 4 :
Union by rank
Update our additional lists
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DFS
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Both trees are of size ≥ 4 :
Union by rank
Update our additional lists
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Implementing Find
• Instead of path compression we use path 

splitting [Tarjan and van Leeuwen]

• Each node in the path is moved from its 
parent to its grand-parent

• If the parent now has less than three children 
we move them as well
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Implementing Find
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Fixing The DFS Order

• If node x has a left sibling (l), it means that the 
sub tree that starts at x is represented in the 
DFS order by segment [x, l)

• It is simple to disconnect the segment and insert 
it before the parent of x in the DFS order
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Fixing The DFS Order

• If node x has a left sibling (l), it means that the 
sub tree that starts at x is represented in the 
DFS order by segment [x, l)

• It is simple to disconnect the segment and insert 
it before the parent of x in the DFS order
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• If node x is the leftmost child of its parent, 
we do not have to change the DFS order 
at all
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Implementing Delete

Tree is of size ≤ 4 :

Rebuild the tree in to reduced from
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Tree of size > 4 :

Find a leaf, switch elements with the leaf node

Delete the leaf node

Update additional lists

If the tree is not reduced as the result of the 
deletion apply local rebuild to the parent of 
the deleted node (or the root)



If node y is not the root, move 2 leftmost children 
of y to its parent

Local Rebuild
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If less than 3 children remain, move the rest of 
the children as well
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If node y is not the root, move 2 leftmost children 
of y to its parent

Local Rebuild
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If node y is the root and node c is a non-leaf child 
of y, move three leftmost children of c to y
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If less than 3 children remain, move the rest of 
the children as well
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Analysis

Our asymptotic worst case and amortized 
complexity is similar to that of Alstrup et al.

We actually reuse parts of their analysis.

The notable difference is a conceptual 
simplification (no vacant nodes) and a much 
simpler “local compression”

+ a simplified analysis (with smaller constant 
factors) 



Future Research

• Can we find a leaf in the sub tree of the node 
requested for deletion?

• Can we reduce the memory usage of the data 
structure?
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Thank You


