Why is modal logic decidable

Petros Potikas

NTUA

9/5/2017
Outline

1 Introduction

2 Syntax

3 Semantics

4 Modal logic vs. First-Order Logic
About modal logic

What is modal logic?
About modal logic

What is modal logic? A modal is anything that qualifies the truth of a sentence.
What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

\(\square p, \Diamond p\)
About modal logic

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

$\Box p$, $\Diamond p$

Historically it begins from Aristotle goes to Leibniz.
About modal logic

What is modal logic? A modal is anything that qualifies the truth of a sentence. □p, ◊p

Historically it begins from Aristotle goes to Leibniz. Continues in 1912 with C.I. Lewis and Kripke in the 60’s.
About modal logic

What is modal logic? A modal is anything that qualifies the truth of a sentence. □p, ◇p

Historically it begins from Aristotle goes to Leibniz. Continues in 1912 with C.I. Lewis and Kripke in the 60’s.

Applications of ML: artificial intelligence (knowledge representation), program verification, hardware verification, and distributed computing
About modal logic

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

\(\square p, \Diamond p\)

Historically it begins from Aristotle goes to Leibniz. Continues in 1912 with C.I. Lewis and Kripke in the 60’s.

Applications of ML: artificial intelligence (knowledge representation), program verification, hardware verification, and distributed computing

Reason: good balance between expressive power and computational complexity
Computational problems

Two computational problems:

1. **Model-checking** problem: is a given formula true at a given state at a given Kripke structure

2. **Validity** problem: is a given formula true in all states of all Kripke structures
Computational problems

- Both problems are decidable.
Computational problems

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
Computational problems

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
Computational problems

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.
Computational problems

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.
- Only very restricted fragments of FO are decidable, typically defined in terms of bounded quantifier alternation.
Computational problems

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.
- Only very restricted fragments of FO are decidable, typically defined in terms of bounded quantifier alternation.
- But in ML we have arbitrary nesting of modalities.
Computational problems

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.
- Only very restricted fragments of FO are decidable, typically defined in terms of bounded quantifier alternation.
- But in ML we have arbitrary nesting of modalities.
- So, this cannot be captured by bounded quantifier alternation.
Modal logic and first-order logic with two variables

- Taking a closer look at ML, we see that it is a fragment of 2-variable first-order logic FO^2.

- FO^2 is more tractable than full first-order logic. However, this is not enough, as extensions of ML, such as computation-tree logic (CTL), are not captured by FO^2. CTL can be viewed as a fragment of 2-variable fixpoint logic (FP^2).

- FP^2 does not enjoy the nice computational properties of FO^2.

- Decidability of CTL can be explained by the tree model property, which is enjoyed by CTL, but not by FP^2.

- Finally, the tree model property leads to automata-based decision procedures.
Taking a closer look at ML, we see that it is a fragment of 2-variable first-order logic FO^2. FO^2 is more tractable than full first-order logic.
Taking a closer look at ML, we see that it is a fragment of 2-variable first-order logic FO^2.

FO^2 is more tractable than full first-order logic.

However, this is not enough, as extensions of ML, as computation-tree logic (CTL) while not captured by FO^2.

CTL can be viewed as a fragment of 2-variable fixpoint logic (FP^2).

FP^2 does not enjoy the nice computational properties of FO^2.

Decidability of CTL can be explained by tree-model property, which is enjoyed by CTL, but not by FP^2.

Finally, the tree model property leads to automata-based decision procedures.
Modal logic and first-order logic with two variables

- Taking a closer look at ML, we see that it is a fragment of 2-variable first-order logic FO^2.
- FO^2 is more tractable than full first-order logic.
- However, this is not enough, as extensions of ML, as computation-tree logic (CTL) while not captured by FO^2.
- CTL can be viewed as a fragment of 2-variable fixpoint logic (FP^2).
Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO^2.

FO^2 is more tractable than full first-order logic.

However, this is not enough, as extensions of ML, as computation-tree logic (CTL) while not captured by FO^2.

CTL can be viewed as a fragment of 2-variable fixpoint logic (FP^2).

FP^2 does not enjoy the nice computational properties of FO^2.
Modal logic and first-order logic with two variables

- Taking a closer look at ML, we see that it is a fragment of 2-variable first-order logic FO^2.
- FO^2 is more tractable than full first-order logic.
- However, this is not enough, as extensions of ML, as computation-tree logic (CTL) while not captured by FO^2.
- CTL can be viewed as a fragment of 2-variable fixpoint logic (FP^2).
- FP^2 does not enjoy the nice computational properties of FO^2.
- Decidability of CTL can be explained by tree-model property, which is enjoyed by CTL, but not by FP^2.
Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO^2.

FO^2 is more tractable than full first-order logic.

However, this is not enough, as extensions of ML, as computation-tree logic (CTL) while not captured by FO^2

CTL can be viewed as a fragment of 2-variable fixpoint logic (FP^2)

FP^2 does not enjoy the nice computational properties of FO^2.

Decidability of CTL can be explained by *tree-model property*, which is enjoyed by CTL, but not by FP^2.

Finally, the tree model property leads to automata-based decision procedures.
Syntax

Definition

(The Basic Modal Language) Let \(\mathcal{P} = \{\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2, \ldots\} \) be a set of sentence letters, or atomic propositions. We also include two special propositions \(\top \) and \(\bot \) meaning ‘true’ and ‘false’ respectively. The set of well-formed formulas of modal logic is the smallest set generated by the following grammar:

\[
\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2, \ldots \mid \top \mid \bot \mid \neg A \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A \mid \Diamond A
\]

Examples

Modal formulas include: \(\Box \bot, \mathcal{P}_0 \rightarrow \Diamond (\mathcal{P}_1 \land \mathcal{P}_2) \).
Truth

- A *Kripke structure* M is a tuple (S, π, R), where S is set of states (or *possible worlds*), $\pi : \mathbb{P} \to 2^S$, and R a binary relation on S.

Truth conditions:

1. $(M, s) | = P$ iff $s \in \pi(P)$
2. $(M, s) | = \top$
3. $(M, s) | \neq \bot$
4. $(M, s) | = \neg A$ iff not $(M, s) | = A$
5. $(M, s) | = A \lor B$ iff either $(M, s) | = A$ or $(M, s) | = B$, or both
6. $(M, s) | = \Box A$ iff for every t, s.t. $R(s, t)$, $(M, t) | = A$
Truth

- A Kripke structure M is a tuple (S, π, R), where S is set of states (or possible worlds), $\pi : \mathbb{P} \to 2^S$, and R a binary relation on S.
- $(M, s) \models A$, sentence A is true at s in M
Truth

- A Kripke structure M is a tuple (S, π, R), where S is set of states (or possible worlds), $\pi : P \rightarrow 2^S$, and R a binary relation on S.
- $(M, s) \models A$, sentence A is true at s in M

Truth conditions:

1. $(M, s) \models P_i$ iff $s \in \pi(P_i)$
2. $(M, s) \models \top$
3. $(M, s) \models \bot$
4. $(M, s) \models \neg A$ iff not $(M, s) \models A$
5. $(M, s) \models A \lor B$ iff either $(M, s) \models A$ or, $(M, s) \models B$, or both
6. $(M, s) \models \Box A$ iff for every t, s.t. $R(s, t), (M, t) \models A$
Truth

- A *Kripke structure* M is a tuple (S, π, R), where S is set of states (or *possible worlds*), $\pi : P \to 2^S$, and R a binary relation on S.
- $(M, s) \models A$, sentence A is true at s in M

Truth conditions:

1. $(M, s) \models P_i$ iff $s \in \pi(P_i)$
2. $(M, s) \models \top$
3. $(M, s) \not\models \bot$
4. $(M, s) \models \neg A$ iff not $(M, s) \models A$
5. $(M, s) \models A \lor B$ iff either $(M, s) \models A$ or, $(M, s) \models B$, or both
6. $(M, s) \models \Box A$ iff for every t, s.t. $R(s, t), (M, t) \models A$

- A sentence true at every possible world in every model is said to be *valid*, written $\models A$
Model-checking problem

Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of M and a modal formula ϕ, determines whether $(M, s) \models \phi$ in time $O(||M|| \times |\phi|)$.

Proof. Let ϕ_1, \ldots, ϕ_m be the subformulas of ϕ listed in order of length. Thus $\phi_m = \phi$, and if ϕ_i is a subformula of ϕ_j, then $i < j$. There are at most $|\phi|$ subformulas, so $m \leq |\phi|$. By induction on k, we can show that we can label each state s with ϕ_j or $\neg \phi_j$, for $j = 1, \ldots, k$, depending on whether or not ϕ_j is true in s in time $O(||M|| \times |\phi|)$. Only interesting case is $\phi_{k+1} = \square \phi_j$, $j < k + 1$. By induction hypothesis, we have that each state has already been labeled with ϕ_j or $\neg \phi_j$, so we know if node s can be labeled with ϕ_{k+1} or not in time $O(||M|| \times |\phi|)$.
Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of M and a modal formula ϕ, determines whether $(M, s) \models \phi$ in time $O(||M|| \times |\phi|)$.

$||M||$: number of states in S, and number of pairs in R
Theorem

There is an algorithm that, given a finite Kripke structure \(M \), a state \(s \) of \(M \) and a modal formula \(\phi \), determines whether \((M, s) \models \phi \) in time \(O(||M|| \times |\phi|) \).

\(||M|| \): number of states in \(S \), and number of pairs in \(R \)

\(|\phi| \): length of \(\phi \), number of symbols is \(\phi \)
Model-checking problem

Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of M and a modal formula ϕ, determines whether $(M, s) \models \phi$ in time $O(||M|| \times |\phi|)$.

$||M||$: number of states in S, and number of pairs in R

$|\phi|$: length of ϕ, number of symbols is ϕ

Proof.

Let $\phi_1, ..., \phi_m$ be the subformulas of ϕ listed in order of length. Thus $\phi_m = \phi$, and if ϕ_i is a subformulas of ϕ_j, then $i < j$. There are at most $|\phi|$ subformulas, so $m \leq |\phi|$. By induction on k, we can show that we can label each state s with ϕ_j or $\neg \phi_j$, for $j = 1, ..., k$, depending on whether or not ϕ_j is true in s in time $O(k||M||)$. Only interesting case is $\phi_{k+1} = \Box \phi_j$, $j < k + 1$. By induction hypothesis, we have that each state has already been labeled with ϕ_j or $\neg \phi_j$, so we know if node s can be labeled with ϕ_{k+1} or not in time $O(||M||)$.

□
Characterizing the properties of necessity

Set of valid formulas can be viewed as a characterization of the properties of necessity
Characterizing the properties of necessity

Set of valid formulas can be viewed as a characterization of the properties of necessity.

Two approaches:

1. *Proof-theoretic*: all properties of necessity can be formally derived from a short list of basic properties.

2. *Algorithmic*: we study algorithms that recognize properties of necessity and consider their computational complexity.
Properties of necessity

Some basic properties of necessity:

Theorem

For all formulas ϕ, ψ, and Kripke structures M:

1. if ϕ is an instance of a propositional tautology, then $M \models \phi$
2. if $M \models \phi$ and $M \models \phi \to \psi$, then $M \models \psi$
3. $M \models (\Box \phi \land \Box (\phi \to \psi)) \to \Box \psi$
4. if $M \models \phi$, then $M \models \Box \phi$
Consider the following axiom system \mathcal{K}:

- (A1) All tautologies of propositional calculus
- (A2) $(\Box \phi \land \Box (\phi \rightarrow \psi)) \rightarrow \Box \psi$ (Distribution axiom)
- (R1) From ϕ and $\phi \rightarrow \psi$ infer ψ (Modus ponens)
- (R2) From ϕ infer $\Box \phi$ (Generalization)

Theorem (Kripke '63)

\mathcal{K} is a sound and complete axiom system.
Characterizing the properties of necessity: Proof-theoretic

Consider the following axiom system \mathcal{K}:

- (A1) All tautologies of propositional calculus
- (A2) $(\Box \phi \land \Box (\phi \rightarrow \psi)) \rightarrow \Box \psi$ (Distribution axiom)
- (R1) From ϕ and $\phi \rightarrow \psi$ infer ψ (Modus ponens)
- (R2) From ϕ infer $\Box \phi$ (Generalization)

Theorem (Kripke ’63)

\mathcal{K} is a sound and complete axiom system.
Characterizing the properties of necessity: algorithmically

- The above characterization of the properties of necessity is not constructive.

Theorem (Fischer, Ladner '79)
If a modal formula \(\phi \) is satisfiable, then \(\phi \) is satisfiable in a Kripke structure with at most \(2^{\|\phi\|} \) states.
The above characterization of the properties of necessity is not constructive.

An algorithm that recognizes valid formulas is another characterization.
Characterizing the properties of necessity: algorithmically

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recognizes valid formulas is another characterization.
- First step, if a formula is satisfiable, it is also satisfiable in a finite structure of bounded size (bounded-model property).
Characterizing the properties of necessity: algorithmically

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recognizes valid formulas is another characterization.
- First step, if a formula is satisfiable, it is also satisfiable in a finite structure of bounded size (bounded-model property).
- Stronger than the finite-model property, which asserts that if a formula is satisfiable, then it is satisfiable in a finite structure.
Characterizing the properties of necessity: algorithmically

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recognizes valid formulas is another characterization.
- First step, if a formula is satisfiable, it is also satisfiable in a finite structure of bounded size (bounded-model property).
- Stronger than the finite-model property, which asserts that if a formula is satisfiable, then it is satisfiable in a finite structure.
- This implies that formula ϕ is valid in all Kripke structures iff ϕ is valid in all finite Kripke structures.
The above characterization of the properties of necessity is not constructive.

An algorithm that recognizes valid formulas is another characterization.

First step, if a formula is satisfiable, it is also satisfiable in a finite structure of bounded size (bounded-model property).

Stronger than the finite-model property, which asserts that if a formula is satisfiable, then it is satisfiable in a finite structure.

This implies that formula ϕ is valid in all Kripke structures iff ϕ is valid in all finite Kripke structures.

Theorem (Fischer,Ladner ’79)

If a modal formula ϕ is satisfiable, then ϕ is satisfiable in a Kripke structure with at most $2^{|\phi|}$ states.
Characterizing the properties of necessity: algorithmically

From the above Theorem we can get an algorithm (not efficient) for testing validity of a formula ϕ: construct all Kripke structures with at most $2^{\mid\phi\mid}$ states and check if the formula is true in every state of each of these structures.
Characterizing the properties of necessity: algorithmically

- From the above Theorem we can get an algorithm (not efficient) for testing validity of a formula ϕ: construct all Kripke structures with at most $2^{\left|\phi\right|}$ states and check if the formula is true in every state of each of these structures.

- The “inherent difficulty” of the problem is given by the next theorem:

Theorem (Ladner ’77)

The validity problem for modal logic is PSPACE-complete.
Modal logic vs. First-Order Logic

- Modal logic can be viewed as a fragment of first-order logic.
Modal logic vs. First-Order Logic

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.
Modal logic vs. First-Order Logic

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.
- Given a set \mathbb{P} of propositional constants, let the vocabulary \mathbb{P}^* consist of unary predicate q corresponding to each propositional constant q in \mathbb{P}, as well as binary predicate R.

Petros Potikas (NTUA)
Modal logic decidability
9/5/2017 15 / 26
Modal logic vs. First-Order Logic

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.
- Given a set P of propositional constants, let the vocabulary P^* consist of unary predicate q corresponding to each propositional constant q in P, as well as binary predicate R.
- Every Kripke structure M can be viewed as a relational structure M^* over the vocabulary P^*.
Modal logic vs. First-Order Logic

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.
- Given a set \(\mathbb{P} \) of propositional constants, let the vocabulary \(\mathbb{P}^* \) consist of unary predicate \(q \) corresponding to each propositional constant \(q \) in \(\mathbb{P} \), as well as binary predicate \(R \).
- Every Kripke structure \(M \) can be viewed as a relational structure \(M^* \) over the vocabulary \(\mathbb{P}^* \).
- Formally, a mapping from a Kripke structure \(M = (S, \pi, R) \) to a relational structure \(M^* \) over the vocabulary \(\mathbb{P}^* \) has:
 1. domain of \(M^* \) is \(S \).
 2. for each propositional constant \(q \in \mathbb{P} \), the interpretation of \(q \) in \(M^* \) is the set \(\pi(q) \).
 3. the interpretation of the binary predicate \(R \), is the binary relation \(R \).
Translation of Modal logic to First-Order Logic

A translation from modal formulas into first-order formulas over the vocabulary \mathbb{P}^*, so that for every modal formula ϕ there is corresponding first-order formula ϕ^* with one free variable (ranging over S):

1. $q^* = q(x)$ for a propositional constant q
2. $(\neg \phi)^* = \neg (\phi^*)$
3. $(\phi \land \psi)^* = (\phi^* \land \psi^*)$
4. $(\Box \phi)^* = (\forall y (R(x, y) \rightarrow \phi^*(x/y))),$ where y is a new variable not appearing in ϕ^* and $\phi^*(x/y)$ is the result of replacing all free occurrences of x in ϕ^* by y
Translation of Modal logic to First-Order Logic

A translation from modal formulas into first-order formulas over the vocabulary \mathbb{P}^*, so that for every modal formula ϕ there is corresponding first-order formula ϕ^* with one free variable (ranging over S):

1. $q^* = q(x)$ for a propositional constant q
2. $(\neg \phi)^* = \neg(\phi^*)$
3. $(\phi \land \psi)^* = (\phi^* \land \psi^*)$
4. $(\Box \phi)^* = (\forall y (R(x, y) \rightarrow \phi^*(x/y))))$, where y is a new variable not appearing in ϕ^* and $\phi^*(x/y)$ is the result of replacing all free occurrences of x in ϕ^* by y

Example

$(\Box \Diamond q)^* = \forall y (R(x, y) \rightarrow \exists z (R(y, z) \land q(z))))$
Theorem (vBenthem ’74,’85)

1. \((M, s) \models \phi \iff (M^*, V) \models \phi^*(x)\), for each assignment \(V\) s.t. \(V(x) = s\).

2. \(\phi\) is a valid modal formula iff \(\phi^*\) is a valid first-order formula.

\(\phi^*\) is true of exactly the domain elements corresponding to states \(s\) for which \((M, s) \models \phi\).
Translation of Modal logic to First-Order Logic

Is there a paradox?

Modal logic is essentially a first-order logic. Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time. Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.

Carefully examining propositional modal logic, reveals that it is a fragment of \(\mathsf{FO}^2 \), e.g., \(\forall x \forall y (R(x, y) \rightarrow R(y, x)) \) is in \(\mathsf{FO}^2 \), while \(\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z)) \) is not in \(\mathsf{FO}^2 \).

Two variables suffice to express modal logic formulas, see the above definition, where new variables are introduced only in the last clause:

Example \((\Box\Box q)^* = \forall y (R(x, y) \rightarrow \forall z (R(y, z) \rightarrow q(z)))\).
Translation of Modal logic to First-Order Logic

Is there a paradox?

- Modal logic is essentially a first-order logic.
Translation of Modal logic to First-Order Logic

Is there a paradox?

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.

Example: \(\square \square q \) is translated to:

\[\forall y \left(R(x, y) \rightarrow \forall z \left(R(y, z) \rightarrow q(z) \right) \right) \]
Translation of Modal logic to First-Order Logic

Is there a paradox?

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.
Translation of Modal logic to First-Order Logic

Is there a paradox?

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.
- Carefully examining propositional modal logic, reveals that it is a fragment of 2-variable first-order logic (FO^2), e.g. \(\forall x \forall y (R(x, y) \rightarrow R(y, x)) \) is in FO^2, while \(\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z)) \) is not in FO^2.
Translation of Modal logic to First-Order Logic

Is there a paradox?

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.
- Carefully examining propositional modal logic, reveals that it is a fragment of 2-variable first-order logic (FO^2), e.g. $\forall x \forall y (R(x, y) \rightarrow R(y, x))$ is in FO^2, while $\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z))$ is not in FO^2.
- Two variables suffice to express modal logic formulas, see the above definition, where new variables are introduced only in the last clause:
Translation of Modal logic to First-Order Logic

Is there a paradox?

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.
- Carefully examining propositional modal logic, reveals that it is a fragment of 2-variable first-order logic (FO²), e.g. \(\forall x \forall y (R(x, y) \rightarrow R(y, x)) \) is in FO², while \(\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z)) \) is not in FO².
- Two variables suffice to express modal logic formulas, see the above definition, where new variables are introduced only in the last clause:

Example

\[
(\square \square q)^* = \forall y (R(x, y) \rightarrow \forall z (R(y, z) \rightarrow q(z))).
\]
Translation of Modal logic to First-Order Logic

But re-using variables we can avoid introducing new variables. Replace the definition of ϕ^* by definition ϕ^+:

\begin{align*}
q^+ &= q(x) \\
¬\phi^+ &= ¬(\phi^+) \\
(\phi \land \psi)^+ &= (\phi^* \land \psi^+) \\
□\phi^+ &= (\forall y (R(x, y) \rightarrow (\forall x (x = y \rightarrow (\forall y (R(x, y) \rightarrow (∀x (x = y \rightarrow q(x))'))))).
\end{align*}
Translation of Modal logic to First-Order Logic

But re-using variables we can avoid introducing new variables. Replace the definition of ϕ^* by definition ϕ^+:

1. $q^+ = q(x)$ for a propositional constant q
2. $(\neg\phi)^+ = \neg(\phi^+)$
3. $(\phi \land \psi)^+ = (\phi^* \land \psi^+)$
4. $(\Box\phi)^+ = (\forall y (R(x, y) \rightarrow \forall x (x = y \rightarrow \phi^+))))$
Translation of Modal logic to First-Order Logic

But re-using variables we can avoid introducing new variables. Replace the definition of ϕ^* by definition ϕ^+:

1. $q^+ = q(x)$ for a propositional constant q
2. $(\neg \phi)^+ = \neg (\phi^+)$
3. $(\phi \land \psi)^+ = (\phi^* \land \psi^+)$
4. $(\Box \phi)^+ = (\forall y (R(x, y) \rightarrow \forall x (x = y \rightarrow \phi^+)))$

Example

$((\Box \Box q)^+ = \forall y (R(x, y) \rightarrow \forall x (x = y \rightarrow \forall y (R(x, y) \rightarrow \forall x (x = y \rightarrow q(x)))))$.
Translation of Modal logic to First-Order Logic

Theorem

1. \((M, s) \models \phi \iff (M^*, V) \models \phi^+(x), \text{ for each assignment } V \text{ s.t. } V(x) = s.\)

2. \(\phi\) is a valid modal formula iff \(\phi^+\) is a valid \(FO^2\) formula.
Complexity of FO^2

How hard is to evaluate truth of FO^2 formulas?

Theorem (Immerman '82, Vardi '95)

There is an algorithm that, given a relational structure M over a domain D, an FO^2-formula $\phi(x,y)$ and an assignment $V: \{x,y\} \rightarrow D$, determines whether $(M, V) \models \phi$ in time $O(|M|^2 \times |\phi|)$.
Complexity of FO^2

How hard is to evaluate truth of FO^2 formulas?

Theorem (Immerman ’82, Vardi ’95)

There is an algorithm that, given a relational structure M over a domain D, an FO^2-formula $\phi(x, y)$ and an assignment $V : \{x, y\} \rightarrow D$, determines whether $(M, V) \models \phi$ in time $O(||M||^2 \times |\phi|)$.
Complexity of FO2

- Historically, Scott in 1962 showed the first decidability result for FO2, without equality. The full class FO2 was considered by Mortimer in 1975, who proved decidability by showing that it has the finite model property.
Complexity of FO2

- Historically, Scott in 1962 showed the first decidability result for FO2, without equality. The full class FO2 was considered by Mortimer in 1975, who proved decidability by showing that it has the finite model property.

- But Mortimer’s proof shows bounded-model property.

Theorem

If an FO2-formula ϕ is satisfiable, then ϕ is satisfiable in a relational structure with at most $2^{|\phi|}$ elements.
Complexity of FO2

- To check the validity of a FO2 formula ϕ, one has to consider only all structures of exponential size.
Complexity of FO2

- To check the validity of a FO2 formula ϕ, one has to consider only all structures of exponential size.
- Further, the translation of modal logic to FO2 is linear, so we have Theorem 5.
Complexity of FO^2

- To check the validity of a FO^2 formula ϕ, one has to consider only all structures of exponential size.
- Further, the translation of modal logic to FO^2 is linear, so we have Theorem 5.
- Note, however, that the validity problem for FO^2 is hard for co-NEXPTIME (F"urer81) and also complete, while from Theorem 6 modal logic is PSPACE-complete.
Complexity of FO2

- To check the validity of a FO2 formula ϕ, one has to consider only all structures of exponential size.
- Further, the translation of modal logic to FO2 is linear, so we have Theorem 5.
- Note, however, that the validity problem for FO2 is hard for co-NEXPTIME (Förer81) and also complete, while from Theorem 6 modal logic is PSPACE-complete.
- The embedding to FO2 does not give a satisfactory explanation of the tractability of modal logic.
Reflexivity

- In epistemic logic veracity is needed, what is known is true,
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e.
 \(\Box \phi \rightarrow \phi \)
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e.
 \(\square \phi \rightarrow \phi \)
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \rightarrow \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive if the relation R is reflexive. Let M_r be the class of all reflexive Kripke structures.
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e.
 \(\Box \phi \rightarrow \phi \)
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive if the relation \(R \) is reflexive. Let \(M_r \) be the class of all reflexive Kripke structures.
- Axiom \(T: \Box p \rightarrow p \)
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e.
 \(\Box \phi \rightarrow \phi \)
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive if the relation \(R \) is reflexive. Let \(M_r \) be the class of all reflexive Kripke structures.
- Axiom \(T: \Box p \rightarrow p \)

Theorem

\(T \) is sound and complete for \(M_r \).
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e.
 \(\square \phi \rightarrow \phi\)
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure \(M = (S, \pi, R)\) is said to be reflexive if the relation \(R\) is reflexive. Let \(M_r\) be the class of all reflexive Kripke structures.
- Axiom \(\mathcal{T}: \square p \rightarrow p\)

Theorem

\(\mathcal{T}\) is sound and complete for \(M_r\).

How hard is validity under the assumption of veracity?
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e. \(\Box \phi \rightarrow \phi \)

- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity

- A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive if the relation \(R \) is reflexive. Let \(M_r \) be the class of all reflexive Kripke structures.

- Axiom \(\mathcal{T} \): \(\Box p \rightarrow p \)

Theorem

\(\mathcal{T} \) is sound and complete for \(M_r \).

How hard is validity under the assumption of veracity?

Theorem

The validity problem for modal logic in \(M_r \) is PSPACE-complete.
Reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e.
 \[\Box \phi \rightarrow \phi \]
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive if the relation \(R \) is reflexive. Let \(M_r \) be the class of all reflexive Kripke structures.
- Axiom \(T: \Box p \rightarrow p \)

Theorem

\(T \) is sound and complete for \(M_r \).

How hard is validity under the assumption of veracity?

Theorem

The validity problem for modal logic in \(M_r \) is PSPACE-complete.

Theorem

A modal formula \(\phi \) is valid in \(M_r \) iff the \(FO^2 \) \(\forall x(R(x, x) \rightarrow \phi^+) \) is valid.
Axiom system S5

What about other properties of necessity?

1. Positive introspection - "I know what I know": $\Box p \rightarrow \Box \Box p$.

2. Negative introspection - "I know what I don't know": $\neg \Box p \rightarrow \Box \neg \Box p$.

A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.

Let M_{rst} be the class of all reflexive, symmetric and transitive Kripke structures.

Let S_5 be the axiom system obtained from T by adding the two rules of introspection.

Theorem 1: S_5 is sound and complete for M_{rst}.

The validity problem for S_5 is NP-complete.

Symmetry can be expressed by FO^2, $\forall x, y (R(x, y) \rightarrow R(y, x))$, while transitivity cannot $\forall x, y, z (R(x, y) \land R(y, z) \rightarrow R(x, z))$.
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”:
 \[\Box p \rightarrow \Box \Box p \].

2. Negative introspection - “I know what I don’t know”:
 \[\neg \Box p \rightarrow \Box \neg \Box p \].

A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive, symmetric, transitive if the relation \(R \) is reflexive, symmetric, transitive.

Let \(M_{rst} \) be the class of all reflexive, symmetric and transitive Kripke structures.

Let \(S_5 \) be the axiom system obtained from \(T \) by adding the two rules of introspection.

Theorem

1. \(S_5 \) is sound and complete for \(M_{rst} \).

2. The validity problem for \(S_5 \) is NP-complete.

Symmetry can be expressed by \(\forall x, y (R(x, y) \rightarrow R(y, x)) \), while transitivity cannot be expressed by \(\forall x, y, z (R(x, y) \land R(y, z) \rightarrow R(x, z)) \).
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”:

\[\Box p \rightarrow \Box \Box p. \]

2. Negative introspection - “I know what I don’t know”:

\[\neg \Box p \rightarrow \Box \neg \Box p. \]
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: $\square p \rightarrow \square\square p$.

2. Negative introspection - “I know what I don’t know”: $\neg\square p \rightarrow \square\neg\square p$.

A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.

Let M_{rst} be the class of all reflexive, symmetric and transitive Kripke structures.

Let S_5 be the axiom system obtained from T by adding the two rules of introspection.

Theorem 1

S_5 is sound and complete for M_{rst}.

The validity problem for S_5 is NP-complete.

Symmetry can be expressed by FO_2, $\forall x, y (R(x, y) \rightarrow R(y, x))$, while transitivity cannot $\forall x, y, z (R(x, y) \land R(y, z) \rightarrow R(x, z))$.
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: $\Box p \rightarrow \Box \Box p$.
2. Negative introspection - “I know what I don’t know”:
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: $\square p \rightarrow \square \square p$.
2. Negative introspection - “I know what I don’t know”: $\neg \square p \rightarrow \square \neg \square p$.
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: \(\Box p \rightarrow \Box \Box p \).

2. Negative introspection - “I know what I don’t know”: \(\neg \Box p \rightarrow \Box \neg \Box p \).

A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive, symmetric, transitive if the relation \(R \) is reflexive, symmetric, transitive.
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: $\box p \rightarrow \box\box p$.
2. Negative introspection - “I know what I don’t know”: $\neg\box p \rightarrow \box\neg\box p$.

A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.

Let M_{rst} be the class of all reflexive, symmetric and transitive Kripke structures.
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: \(\square p \rightarrow \square \square p \).
2. Negative introspection - “I know what I don’t know”: \(\neg \square p \rightarrow \square \neg \square p \).

A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive, symmetric, transitive if the relation \(R \) is reflexive, symmetric, transitive.

Let \(M_{rst} \) be the class of all reflexive, symmetric and transitive Kripke structures.

Let \(S5 \) be the axiom system obtained from \(T \) by adding the two rules of introspection.
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: \(\Box p \to \Box \Box p \).
2. Negative introspection - “I know what I don’t know”: \(\neg \Box p \to \Box \neg \Box p \).

A Kripke structure \(M = (S, \pi, R) \) is said to be reflexive, symmetric, transitive if the relation \(R \) is reflexive, symmetric, transitive.

Let \(M_{rst} \) be the class of all reflexive, symmetric and transitive Kripke structures.

Let \(S5 \) be the axiom system obtained from \(T \) by adding the two rules of introspection.

Theorem

1. \(S5 \) is sound and complete for \(M_{rst} \).
2. The validity problem for \(S5 \) is NP-complete.
Axiom system S5

What about other properties of necessity? Consider introspection:

1. Positive introspection - “I know what I know”: $\square p \rightarrow \square \square p$.
2. Negative introspection - “I know what I don’t know”: $\neg \square p \rightarrow \square \neg \square p$.

- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.
- Let M_{rst} be the class of all reflexive, symmetric and transitive Kripke structures.
- Let $S5$ be the axiom system obtained from T by adding the two rules of introspection.

Theorem

1. $S5$ is sound and complete for M_{rst}.
2. The validity problem for $S5$ is NP-complete.

Symmetry can be expressed by FO^2, $\forall x, y (R(x, y) \rightarrow R(y, x))$, while transitivity cannot $\forall x, y, z (R(x, y) \land R(y, z) \rightarrow R(x, z))$.
About decidability of modal logic

- The validity in a modal logic is typically decidable. It is very hard to find a modal logic, where validity is undecidable.
- The translation to FO^2 provides a partial explanation why modal logic is decidable.