Simulating a Parallel Random Access Machine

Introduction to Parallel Algorithms and Architectures,
§3.6
Why simulate?

- The PRAM is an excellent framework for studying parallelism.
- However, a global shared memory is not easily implementable on a large scale.
- *Practical approach*: construct a fixed-connection network and simulate the PRAM on it.
Simulation on a butterfly

- Each *PRAM processor* is simulated by a node of the butterfly.
- The *global memory* is distributed among the nodes of the butterfly.
- Memory *access*: send a packet to the appropriate node.
- Memory *read*: said node returns the desired data.
A worst-case scenario

☐ If \#memory cells $>>$ \#processors, memory contention may be an issue (even with EREW).

☐ $M \geq N^2$: all N processors may wish to access memory locations that reside on the same node.

☐ Combining will not help in practice.
A randomized simulation based on hashing

- To simulate an N-processor PRAM with M memory cells on an N-node butterfly:
 - We randomly distribute the M memory cells among the butterfly’s N local memories using a $O(\log N)$-wise independent random hash function $h:[1,M] \rightarrow [1,N]$.
 - The packet routing problem that emerges for a single step of the PRAM computation is an average-case routing problem, solvable in $O(\log N)$ steps with high probability.
A closer look at the simulation

- Route each packet within its row to level 0. (each row ends up with $O(\log N)$ packets)
- Then, route each packet to its correct row. (in $O(\log N)$ steps with $O(1)$-size queues)
- Finally, route each packet to the correct level within its destination row. (with high probability there are $O(\log N)$ packets destined for each row, so this takes $O(\log N)$ steps)
Methods for improving efficiency

- The simulation we described is optimal, since each processor may wish to access data that is $\Omega(\log N)$ away in the network.

- However, using a logN-dimensional butterfly yields a $\Theta(\log N)$-factor improvement in the efficiency of the simulation.
Simulation using a $\log N$-dimensional butterfly

- Can be used to simulate a $N\log N$-processor PRAM.
- Each input node simulates $\log N$ processors.
- Routing can still be done in $O(\log N)$ steps with high probability.
Simulating with data replication

- Data replication: make multiple copies of the data stored in the global memory.
- Idea: if there is contention for one memory block, we might still gain quick access to another memory block that replicates the data we need.
Data replication overhead

- Storing k copies of each data item takes k times as much total space.
- Keeping track of old copies.
- We need to ensure that any set of N memory locations can be accessed quickly.
A deterministic simulation using replicated data

- Each item is replicated $k = \log M$ times.
- Any set of N items can be accessed in $O(\log M \log N \log \log N)$ steps on an N-node butterfly.
- Each copy of an item includes a *timestamp* (PRAM step during which the copy was last updated).
- To complete a memory access, we have to successfully access at least $\left\lceil \frac{k + 1}{2} \right\rceil$ copies.
A special hash function for data replication

- The j-th copy of the i-th item will be stored in memory location \(h(i,j) \) where \(h: [1,M] \times [1,k] \rightarrow [1,N] \) is a special hash function satisfying:
 - any block of memory stores \(O(Mk/n) \) copies of items.
 - the copies of any set of s items are spread across at least \(3ks/4 \) blocks of memory, for \(s \leq \varepsilon_0 N/k \).
A phase of the simulation (1)

1. Compute the number of unsatisfied requests, I_t.
2. Identify a set of $s = \min\{I_t, \varepsilon_0 N/k\}$ active unsatisfied requests.
3. Relocate the i-th active request to node $(i-1)k+1$.
4. Make k copies of each request, and store the j-th copy of the i-th request in node $(i-1)k+j$.
A phase of the simulation (2)

5. Sort the sk resulting requests by destination block, and eliminate all but one for each block. At least $3sk/4$ requests survive.

6. Route surviving requests to their destinations, and return successful packets to the node where they originated.

7. Check whether or not $(k+1)/2$ or more copies of each active request were satisfied.

8. Identify a current copy for each satisfied request.
An upper bound on the number of phases

☐ An active request is not satisfied ⇔ at least $k/2$ of its copies are not satisfied.

☐ But the number of copies of active requests that are not satisfied is at most $ks/4$.

☐ Therefore, at least $s/2$ active requests are satisfied in each phase.

☐ It turns out that $O(\log M)$ phases suffice.
Running time of the simulation

- Each phase of the simulation can be completed in $O(\log N \log \log N)$ steps.
- The $\log \log N$-factor is due to sorting.
- The running time can be improved by a $\log \log \log N$-factor with a better analysis.
Information dispersal

- Encode each item z into k pieces $z_1, z_2, ..., z_k$ such that:
 - $|z_i| \approx 3|z|/k$, for each i.
 - z can be reconstructed from any $k/3$ pieces.

- Each time we need to access z, we are content with accessing $2k/3$ pieces of z.
Using information dispersal to improve performance

- $O(\log M)$ phases of the previous algorithm still suffice.

- However, the operations involve much shorter items and we can expect things to run $k/3 = \Theta(\log M)$ times faster.

- Therefore, the running time now becomes $O(\log N \log \log N)$ steps.