Definitions

Approximability

$\mu \Pi \lambda \forall$

Optimization problem

- Optimization problem P characterized by
- Set of instances I
- Function SOL that associates to any instance the set of feasible solutions
- Measure function m that, for any feasible solution, provides its positive integer value
- Goal, that is, either MAX or MIN
- An optimal solution is a feasible solution y^{*} such that

$$
m\left(x, y^{*}\right)=\operatorname{Goal}\{m(x, y) \mid y \in \operatorname{SOL}(x)\}
$$

- For any instance $x, m^{*}(x)$ denotes optimal measure
- Vertex Cover
- Set Cover
- MaxSat
- Clique
- Dknapsack
- TSP

Optimization Problems

- many hard problems (especially NP-hard) are optimization problems
- e.g. find shortest TSP tour
- e.g. find smallest vertex cover
- e.g. find largest clique
- may be minimization or maximization problem
- "opt" = value of optimal solution

Approximation Algorithms

MINIMUM VERTEX COVER

- often happy with approximately optimal solution
- warning: lots of heuristics
- we want approximation algorithm with guaranteed approximation ratio of ρ
- meaning: on every input x , output is guaranteed to have value
at most ρ *opt for minimization
at least opt/ ρ for maximization
- INSTANCE: Graph $G=(V, E)$
- SOLUTION: A subset U of V such that, for any edge (u, v), either u is in U or v is in U
- MEASURE: Cardinality of U

Three problems in one

- Constructive problem: given an instance, compute an optimal solution and its value
- We will study these problems
- Evaluation problem: given an instance, compute the optimal value
- Decision problem: given an instance and an integer k, decide whether the optimal value is at least (if Goal=MAX) or at most (if Goal=MIN) k

Class NPO

- Optimization problems such that
$-I$ is recognizable in polynomial time
- Solutions are polynomially bounded (in length) and recognizable in polynomial time
- m is computable in polynomial time
- Example: MINIMUM VERTEX COVER
- Theorem : If P is in NPO, then the corresponding decision problem is in NP

Class PO

- NPO problems solvable in polynomial time
- Example: SHORTEST PATH
- An optimization problem P is $N P$-hard if any problem in NP is Turing reducible to P
- Theorem: If the decision problem corresponding to a NPO problem P is $N P$-complete, then P is NP-hard
- Example: MINIMUM VERTEX COVER
- Corollary: If $\mathrm{P} \neq \mathrm{NP}$ then $\mathrm{PO} \neq \mathrm{NPO}$

Evaluating versus constructing

- Decision problem is Turing reducible to evaluation problem
- Evaluation problem is Turing reducible to constructive problem
- Evaluation problem is Turing reducible to decision problem
- Binary search on space of possible measure values
- Is constructive problem Turing reducible to evaluation problem?

MAXIMUM SATISFIABILITY

- INSTANCE: CNF Boolean formula, that is, set C of clauses over set of variables V
- SOLUTION: A truth-assignment f to V
- MEASURE: Number of satisfied clauses

Evaluating versus constructing: MAX SAT

```
begin
    for each variable v
    begin
        k:= MAX SAT evval (x);
        x TRU:}==\mathrm{ formula obtained by setting v to TRUE in }x\mathrm{ ;
        x FALSE}:= formula obtained by setting v to FALSE in x
        if MAX SAT 
        begin
            f(v) := TRUE; }x:=\mp@subsup{x}{\mathrm{ TRUE}}{
            end
            else
            begin
            f(v):= FALSE; }x:=\mp@subsup{x}{\mathrm{ FALSE}}{
        end;
    return f
```

Theorem: if the decision problem is NP-complete, then the constructive problem is Turing reducible to the decision problent

Performance ratio

Given an optimization problem P , an instance x and a feasible solution y, the performance ratio of y with respect to x is

$$
R(x, y)=\max \left(m(x, y) / m^{*}(x), m^{*}(x) / m(x, y)\right)
$$

An algorithm is said to be an r-approximation algorithm if, for any instance x, returns a solution whose performance ratio is at most r

Sequential algorithm

- Polynomial-time 2-approximation algorithm for MINIMUM BIN PACKING
- Next Fit algorithm

```
```

begin

```
```

begin
for each number a
for each number a
if }a\mathrm{ fits into the last open bin then assign }a\mathrm{ to this bin
if }a\mathrm{ fits into the last open bin then assign }a\mathrm{ to this bin
else open new bin and assign }a\mathrm{ to this bin
else open new bin and assign }a\mathrm{ to this bin
return f
return f
end.

```
```

end.

```
```


MINIMUM BIN PACKING

- INSTANCE: Finite set I of rational numbers

 $\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{i} \in(0,1]$- SOLUTION: Partition $\left\{B_{1}, \ldots, B_{k}\right\}$ of I into k bins such that the sum of the numbers in each bin is at
most 1
- MEASURE: Cardinality of the partition, i.e., k

Proof

- Number of bins used by the algorithm is at most $2 A$, where A is the sum of all numbers
- For each pair of consecutive bins, the sum of the number included in these two bins is greater than 1
- Each feasible solution uses at least A bins
- Best case each bin is full (i.e., the sum of its numbers is 1)
- Performance ratio is at most 2
- Theorem: First Fit Decreasing computes solution whose measure is at most $1.5 m *(x)+1^{16}$

Tightness

- Let $I=\{1 / 2,1 / 2 n, 1 / 2,1 / 2 n, \ldots, 1 / 2,1 / 2 n\}$ contain $4 n$ items

optimal packing

Next Fitpacking

Gavril's algorithm for vertex cover

```
begin
    U=\varnothing;
    for any edge (u,v) do
        if (u is not in U) and (v is not in U) then
        insert }u\mathrm{ and }v\mathrm{ in }U\mathrm{ ;
    return }
end.
```

- Theorem: Gavril's algorithm is a polynomialtime 2-approximation algorithm

MINIMUM GRAPH COLORING

Sequential algorithm: bad

- INSTANCE: Graph $G=(V, E)$
- SOLUTION: A coloring of V, that is, function f such that, for any edge $(u, v), f(u) \neq f(v)$
- MEASURE: Number of colors, i.e., cardinality of the range of f

Example

The performance ratio is 2

Generalizing, the performance ratio is $n / 2$, where n is the number of nodes

Class APX

- NPO problems P that admit a polynomial-time $r-$ approximation algorithm, for given constant $r \geq 1$
- P is said to be r-approximable
- Examples: MINIMUM BIN PACKING, MAXIMUM SAT, MAXIMUM CUT, MINIMUM VERTEX COVER

Class PTAS

- NPO problems P that admit a polynomial-time $r-$ approximation algorithm, for any $r>1$
- Time must be polynomial in the length of the instance but not necessarily in $1 /(r-1)$
- Time complexity $O\left(n^{1 /(r-1)}\right)$ or $O\left(2^{1 /(r-1)} n^{3}\right)$
- P is said to admit a polynomial-time approximation scheme
- Example: MINIMUM PARTITION

The NPO world

NPO	
APX	MINIMUM BIN PACKING MAXIMUM SAT MAXIMUM CUT MINIMUM VERTEX COVER
PTAS	MINIMUM PARTITION
PO	MINIMUM PATH

Non-Approximability Results

Summary

- Gap technique
- Examples: MINIMUM GRAPH COLORING, MINIMUM TSP, MINIMUM BIN PACKING
- The PCP theorem
- Application: Non-approximability of MAXIMUM 3SAT

The Gap Technique

- P_{1} : NPO minimization problem (same for maximization)
- P_{2} : NP-hard decision problem
- Function f that maps instances x of P_{2} into instances $f(x)$ of P_{1} such that:
- If x is a YES-instance, then $m^{*}(f(x))=c(x)$
- If x is a NO-instance, then $m^{*}(f(x)) \geq c(x)(1+\mathrm{g})$
- Theorem: No r-approximation algorithm for P_{1} exists with $r<(1+g)$ (unless $\mathrm{P}=\mathrm{NP}$)

Inapproximability of graph coloring

- NP-hard to decide whether a planar graph can be colored with 3 colors
- Any planar graph is 4-colorable
- $f(G)=G$ where G is a planar graph
- If G is 3 -colorable, then $m^{*}(f(G))=3$
- If G is not 3-colorable, then $m^{*}(f(G))=4=3(1+1 / 3)$
- Gap: $\mathrm{g}=1 / 3$
- Theorem: MINIMUM GRAPH COLORING has no r-approximation algorithm with $r<4 / 3$ (unleşs $\mathrm{P}=\mathrm{NP}$)

Inapproximability of bin packing

- NP-hard to decide whether a set of integers I can be partitioned into two equal sets
- $f(I)=(I, B)$ where B is equal to half the total sum
- If I is a YES-instance, then $m^{*}(f(I))=2$
- If I is a NO-instance, then $m^{*}(f(I)) \geq 3=2(1+1 / 2)$
- Gap: $g=1 / 2$
- Theorem: MINIMUM BIN PACKING has no r approximation algorithm with $r<3 / 2$ (unless $\mathrm{P}=\mathrm{NP}$)

MINIMUM TSP

INSTANCE: Complete graph $G=(V, E)$, weight function on E

- SOLUTION: A tour of all vertices, that is, a permutation π of V

MEASURE: Cost of the tour, i.e., $\Sigma_{1 \leq k \leq \mid \eta-1} w\left(v_{\pi[k]}, v_{\pi[k+1]}\right)+w\left(v_{\pi[\mid]]}, v_{\pi[1]}\right)$

Inapproximability of TSP

- NP-hard to decide whether a graph contains an Hamiltonian circuit
- For any $g>0, f(G=(V, E))=\left(G^{\prime}=\left(V, V^{2}\right), w\right)$ where $w(u, v)=1$ if (u, v) is in E, otherwise $w(u, v)=1+|V| g$
- If G has an Hamiltonian circuit, then $m^{*}(f(G))=|V|$
- If G has no Hamiltonian circuit, then

$$
m^{*}(f(G)) \geq|V|-1+1+|V| g=|V|(1+g)
$$

- Gap: any $g>0$
- Theorem: MINIMUM TSP has no r approximation algorithm with $\mathrm{r}>1$ (unless $\mathrm{P}=\underset{32}{\mathrm{NP}}$)

The NPO world (unless $\mathrm{P}=\mathrm{NP}$)

NPO	MINIMUM TSP
APX	MINIMUM BIN PACKING MAXIMUM SAT MINIMUM VERTEX COVER MAXIMUM CUT
PTAS	MINIMUM PARTITION
PO	MINIMUM PATH

Input-Dependent and Asymptotic Approximation

Summary

- Approximation algorithm for set cover
- Asymptotic approximation scheme for edge coloring

MINIMUM SET COVER

- INSTANCE: Collection C of subsets of a finite set S
- SOLUTION: A set cover for S, i.e., a subset C^{\prime} of C such that every element in S belongs to at least one member of C^{\prime}
- MEASURE: $\left|C{ }^{\prime}\right|$

Johnson's algorithm

- Polynomial-time logarithmic approximation algorithm for MINIMUM SET COVER

```
```

begin

```
```

begin
end.

```
```

end.

```
```

```
\(U:=S ; C^{\prime}:=\varnothing\);
```

$U:=S ; C^{\prime}:=\varnothing$;

```
\(U:=S ; C^{\prime}:=\varnothing\);
    for any \(c_{i}\) do \(c^{\prime}{ }_{i}:=c_{i}\);
    for any \(c_{i}\) do \(c^{\prime}{ }_{i}:=c_{i}\);
    for any \(c_{i}\) do \(c^{\prime}{ }_{i}:=c_{i}\);
    repeat
    repeat
    repeat
        \(i:=\) index of \(c\) 'with maximum cardinality;
        \(i:=\) index of \(c\) 'with maximum cardinality;
        \(i:=\) index of \(c\) 'with maximum cardinality;
        insert \(c_{i}\) in \(C^{\prime}\);
        insert \(c_{i}\) in \(C^{\prime}\);
        insert \(c_{i}\) in \(C^{\prime}\);
        \(U:=U-\left\{\right.\) elements of \(\left.c_{i}^{\prime}\right\} ;\)
        \(U:=U-\left\{\right.\) elements of \(\left.c_{i}^{\prime}\right\} ;\)
        \(U:=U-\left\{\right.\) elements of \(\left.c_{i}^{\prime}\right\} ;\)
        delete all elements of \(c_{i}\) from all \(c^{\prime}\);
        delete all elements of \(c_{i}\) from all \(c^{\prime}\);
        delete all elements of \(c_{i}\) from all \(c^{\prime}\);
    until \(U:=\varnothing\)
```

 until \(U:=\varnothing\)
    ```
    until \(U:=\varnothing\)
```


Vizing's algorithm

- Polynomial-time algorithm to color a graph with at most $D+1$ colors, where D denotes the maximum degree of the graph

```
begin
    D:=maximum degree of G;
    G
    repeat
        add an edge (u,v) of E to E';
        extend coloring of G' without (u,v) into coloring of G
        with at most D+1 colors;
        E:=E-{(u,v)};
    until }E:=
```

end.

MINIMUM EDGE COLORING

- INSTANCE: Graph $G=(V, E)$

- SOLUTION: A coloring of E, that is, function f such that, for any pair of edges e_{1} and e_{2} that share a common endpoint, $f\left(e_{1}\right) \neq f\left(e_{2}\right)$
- MEASURE: Number of colors, i.e., cardinality of the range of f

Asymptotic approximation scheme

- The algorithm returns an edge-coloring with at most $D+1$ colors
- The optimum is at least D
- Hence, performance ratio is at most
$(D+1) / m^{*}(G) \leq D / D+1 / m^{*}(G)=1+1 / m^{*}(G)$
- It implies a 2 -approximation

Class F-APX

- Let F be a class of functions
- The class F -APX contains all NPO problems P that admit a polynomial-time algorithm A such that, for any instance x of $\mathrm{P}, R(x, \mathrm{~A}(x))) \leq f(|x|)$, for a given function $f \in \mathbf{F}$
- P is said to be $f(n)$-approximable
- A is said to be an $f(n)$-approximation algorithm

Class APTAS

- The class APTAS contains all NPO problems P that admit a polynomial-time algorithm A and a constant k such that, for any instance x of P and for any rational $r, R(x, \mathrm{~A}(x, r))) \leq r+k / m *(x)$
- The time complexity of A is polynomial in $|x|$ but not necessarily in $1 /(r-1)$
- A is said to be an asymptotic approximation scheme
- A is clearly a $(r+k)$-approximation algorithm

The NPO world

| NPO | |
| :--- | :--- |
| $O(n)$-APX | MINIMUM GRAPH COLORING |
| $O(\log n)$-APX | MINIMUM SET COVER |
| APX | MAXIMUM SAT
 MINIMUM VERTEX COVER
 MAXIMUM CUT |
| APTAS | MINIMUM EDGE COLORING |
| PTAS | MINIMUM PARTITION |
| PO | MINIMUM PATH |

Approximation Preserving Reductions

Summary

- AP-reducibility
- L-reduction technique
- Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2-SAT, MAXIMUM NAE 3-SAT, MAXIMUM SAT(B)

Reducibility and NPO problems

AP-reducibility

- P_{1} is AP-reducible to P_{2} if two functions f and g and a constant $c \geq 1$ exist such that:
- For any instance x of P_{1} and for any $r, f(x, r)$ is an instance of P_{2}
- For any instance x of P_{1}, for any r, and for any solution y of $f(x, r), g(x, y, r)$ is a solution of x
- For any fixed r, f and g are computable in polynomial time
- For any instance x of P_{1}, for any r, and for any solution y of $f(x, r)$, if $R(f(x, r), y) \leq r$, then $R(x, g(x, y, r))$ $\leq 1+c(r-1)$

Basic properties

- Theorem: If P_{1} is AP-reducible to P_{2} and P_{2} is in APX, then P_{1} is in APX
- If A is an r-approximation algorithm for P_{2} then $g(x, \mathrm{~A}(f(x, r)), r)$
is a $(1+c(r-1))$-approximation algorithm for P_{1}
- Theorem: If P_{1} is AP-reducible to P_{2} and P_{2} is in PTAS, then P_{1} is in PTAS
- If A is a polynomial-time approximation scheme for P_{2} then

$$
g\left(x, \mathrm{~A}\left(f\left(x, r^{\prime}\right), r^{\prime}\right), r^{\prime}\right)
$$

is a polynomial-time approximation scheme for $\mathrm{P}_{\mathrm{L}+8}$ where $r^{\prime}=1+(r-1) / c$

Basic properties

- Theorem: If P_{1} is AP-reducible to P_{2} and P_{2} is in APX, then P_{1} is in APX
- If A is an r-approximation algorithm for P_{2} then $g(x, \mathbf{A}(f(x, r)), r)$
is a $(1+c(r-1))$-approximation algorithm for P_{1}
- Theorem: If P_{1} is AP-reducible to P_{2} and P_{2} is in PTAS, then P_{1} is in PTAS
- If A is a polynomial-time approximation scheme for P_{2} then

$$
g\left(x, \mathrm{~A}\left(f\left(x, r^{\prime}\right), r^{\prime}\right), r^{\prime}\right)
$$

is a polynomial-time approximation scheme for $P_{l, i \in b}$ where $r^{\prime}=1+(r-1) / c$

L-reducibility

- P_{1} is L-reducible to P_{2} if two functions f and g and two constants a and b exist such that:
- For any instance x of $\mathrm{P}_{1}, f(x)$ is an instance of P_{2}
- For any instance x of P_{1}, and for any solution y of $f(x)$, $g(x, y)$ is a solution of x
- f and g are computable in polynomial time
- For any instance x of $\mathrm{P}_{1}, m^{*}(f(x)) \leq a m^{*}(x)$
- For any instance x of P_{1} and for any solution y of $f(x)$, $\left|m^{*}(x)-m(x, g(x, y))\right| \leq b\left|m^{*}(f(x))-m(f(x), y)\right|$

Basic property of L-reductions

- Theorem: If P_{1} is L-reducible to P_{2} and P_{2} is in PTAS, then P_{1} is in PTAS
- Relative error in P_{1} is bounded by $a b$ times the relative error in P_{2}
- However, in general, it is not true that if P_{1} is Lreducible to P_{2} and P_{2} is in APX, then P_{1} is in APX
- The problem is that the relation between r and r ' may be non-invertible

Inapproximability of clique

- Theorem: MAXIMUM 3-SAT is L-reducible to MAXIMUM CLIQUE
- $f(C, U)$ is the graph $G(V, E)$ where $V=\{(l, c): l$ is in clause $c\}$ and $E=\left\{\left((l, c),\left(l^{\prime}, c^{\prime}\right)\right): l \neq l^{\prime}\right.$ and $\left.c \neq c^{\prime}\right\}$
- $g\left(C, U, V^{\prime}\right)$ is a truth-assignment t such that $t(u)$ is true if and only if a clause c exists for which (u, c) is in V^{\prime}
- $a=b=1$
- t satisfies at least $\left|V^{\prime}\right|$ clauses
- optimum measures are equal
- Corollary: MAXIMUM CLIQUE does not belong to APX

Inapproximability of independent set

- Theorem: MAXIMUM CLIQUE is AP-reducible to MAXIMUM INDEPENDENT SET
$-f(G=(V, E))=G^{c=\left(V, V^{2}-E\right) \text {, which is called the }}$ complement graph
- $g(G, U)=U$
- $c=1$
- Each clique in G is an independent set in G^{c}
- Corollary: MAXIMUM INDEPENDENT SET does not belong to APX

MAXIMUM NOT-ALL-EQUAL SAT

INSTANCE: CNF Boolean formula, that is, set C of clauses over set of variables V

SOLUTION: A truth-assignment f to V
MEASURE: Number of clauses that contain both a false and a true literal

Inapproximability of 2-satisfiability

- Theorem: MAXIMUM 3-SAT is L-reducible to MAXIMUM 2-SAT
- ftransforms each clause x or y or z into the following set of 10 clauses where i is a new variable:
$-x, y, z, i$, not x or not y, not x or not z, not y or not z, x or not i, y or not i, z or not i
- $g(C, t)=$ restriction of t to original variables
- $a=13, b=1$
- $m^{*}(f(x))=6|C|+m^{*}(x) \leq 12 m^{*}(x)+m^{*}(x)=13 m^{*}(x)$
$-m^{*}(f(x))-m(f(f), t) \leq m^{*}(x)-m(x, g(C, t))$
- Corollary: MAXIMUM 2-SAT is not in PTAS

Inapproximability of NAE 2-

 satisfiability- Theorem: MAXIMUM 2-SAT is L-reducible to MAXIMUM NAE 3-SAT
- f transforms each clause x or y into new clause x or y or z where z is a new global variable
- $g(C, t)=$ restriction of t to original variables
- $a=1, b=1$
- z may be assumed false
- each new clause is not-all-equal satisfied iff the original clause is satisfied
- Corollary: MAXIMUM NAE 3-SAT is not in_{56} PTAS

Inapproximability of MAXIMUM SAT(B)

- Standard reduction
- If a variable y occurs h times, create new h variables $y[i]$
- Substitute i th occurrence with $y[i]$
- $\operatorname{Add}(\operatorname{not} y[i]$ or $y[i+1])$ and $(\operatorname{not} y[h]$ or $y[1])$
- Not useful: deleting one new clause may increase the measure arbitrarily
- The cycle of implications can be easily broken
- If we add all possible implications (that is, we use a clique), then no the number of occurrences is not bounded and there is no linear relation between $\quad 57$ ontimal mascures

Expander graphs

- A graph $G=(V, E)$ is an expander if, for every subset S of the nodes, the corresponding cut has measure at least

$$
\min \{|S|,|V-S|\}
$$

- A cycle is not an expander
- A clique is an expander (but has unbounded degree)
- Theorem: A constant n_{0} and an algorithm A exist such that, for any $k>n_{0}, \mathrm{~A}(k)$ constructs in time polynomial in k a 14-regular expander graph E_{k} with k nodes.

AP-reduction through expanders

- We may assume that h is greater than n_{0} (it suffices to replicate any clause n_{0} times)
- For any i and j, if (i, j) is an edge of E_{h} then add
$($ not $y[i]$ or $y[j])$ and (not $y[j]$ or $y[i])$
- Globally, we have $m+14 N$ clauses where N is the sum of the $h \mathrm{~s}$
- Each variable occurs in exactly 28 new clauses and 1 old clause: hence, $B=29$
- Starting from $B=29$, it is possible to arrive at $B=3$

Proof

- Claim: Any solution must satisfy all new clauses (that is, gives the same value to all copies of the same variable)
- From the expansion property, if we change the truth value of the copies in the smaller set we do not loose anything
- $a=85$
- $m^{*}(f(x))=14 N+m^{*}(x) \geq 42 m+m^{*}(x) \geq 85 m^{*}(x)$
- $b=1$
- $m^{*}(x)-m(x, t)=14 N+m^{*}(f(x))-14 N-m(f(x), t)=m^{*}(f(x))-$ $m(f(x), t)$

Other inapproximability results

- Theorem: MINIMUM VERTEX COVER is not in PTAS
- Reduction from MAXIMUM 3-SAT(3)
- Theorem: MAXIMUM CUT is not in PTAS
- Reduction from MAXIMUM NAE 3-SAT
- Theorem: MINIMUM GRAPH COLORING is not in APX
- Reduction from variation of independent set

Approximation Algorithms

- Example approximation algorithm:
- Recall:

Vertex Cover (VC): given a graph G, what is the smallest subset of vertices that touch every edge?

- NP-complete

The NPO world if $\mathrm{P} \neq \mathrm{NP}$

| NP | MINIMUM TSP |
| :---: | :--- |
| Pbly-APX | MAXIMUM INDEPENDENT SET
 MAXIMUM CLIQUE
 MINIMUM GRAPH COLORING |
| APX | MINIMUM BIN PACKING
 MAXIMUM SATISFIABILITY

 MINIMUM VERTEX COVER
 MAXIMUM CUT |
| PO | MINIMUM PARTITION |

Approximation Algorithms

- Approximation algorithm for VC :
- pick an edge (x, y), add vertices x and y to VC
- discard edges incident to x or y ; repeat.
- Claim: approximation ratio is 2.
- Proof:
- an optimal VC must include at least one endpoint of each edge considered
- therefore $2 *$ opt \geq actual

Approximation Algorithms

- diverse array of ratios achievable
- some examples:
- (min) Vertex Cover: 2
- MAX-3-SAT (find assignment satisfying largest \# clauses): 8/7
- (min) Set Cover: $\ln n$
- (max) Clique: $n / \log ^{2} n$
- (max) Knapsack: $(1+\varepsilon)$ for any $\varepsilon>0$

Approximation Algorithms

(max) Knapsack: $(1+\varepsilon)$ for any $\varepsilon>0$

- called Polynomial Time Approximation Scheme (PTAS)
- algorithm runs in poly time for every fixed $\varepsilon>0$
- poor dependence on ε allowed
- If all NP optimization problems had a PTAS, almost like $\mathbf{P}=\mathbf{N P}(!)$

Approximation Algorithms

- A job for complexity: How to explain failure to do better than ratios on previous slide?
- just like: how to explain failure to find poly-time algorithm for SAT...
- first guess: probably NP-hard
- what is needed to show this?
- "gap-producing" reduction from NP-complete problem L_{1} to L_{2}

Approximation Algorithms

- "gap-producing" reduction from NPcomplete problem L_{1} to I

Gap producing reductions

- r-gap-producing reduction:
- f computable in poly time
$-\mathrm{x} \in \mathrm{L}_{1} \Rightarrow \operatorname{opt}(\mathrm{f}(\mathrm{x})) \leq \mathrm{k}$
$-\mathrm{x} \notin \mathrm{L}_{1} \Rightarrow \operatorname{opt}(\mathrm{f}(\mathrm{x}))>\mathrm{rk}$
- for max. problems use " $\geq \mathrm{k}$ " and " $<\mathrm{k} / \mathrm{r} "$
- Note: target problem is not a language
- promise problem (yes \cup no not all strings)
- "promise": instances always from (yes \cup no)

- Main purpose:
-r-approximation algorithm for L_{2} distinguishes between $f($ yes $)$ and $f(n o)$; can use to decide L_{1}
- "NP-hard to approximate to within r"

Gap preserving reductions

- gap-producing reduction difficult (more later)
- but gap-preserving reductions eaci

```
Warning: many
reductions not
gap-preserving
```


Gap preserving reductions

- Example gap-preserving reduction:
- reduce MAX-k-SAT with gap ε \qquad constants
- to MAX-3-SAT with gap ε '
- "MAX-k-SAT is NP-hard to approx. within $\varepsilon \Rightarrow$ MAX-

3-SAT is NP-hard to approx. within $\varepsilon^{\prime \prime}$ "

- MAXSNP (PY) - a class of problems reducible to each other in this way
- PTAS for MAXSNP-complete problem iff PTAS for all problems in MAXSNP

MAX-k-SAT

- Missing link: first gap-producing reduction
- history's guide
it should have something to do with SAT
- Definition: MAX-k-SAT with gap ε
- instance: k-CNF φ
- YES: some assignment satisfies all clauses
- NO: no assignment satisfies more than $(1-\varepsilon)$
fraction of clauses

Proof systems viewpoint

- k -SAT NP-hard \Rightarrow for any language $\mathrm{L} \in$ NP proof system of form:
- given x , compute reduction to k-SAT: φ_{x}
- expected proof is satisfying assignment for φ_{x}
- verifier picks random clause ("local test") and checks that it is satisfied by the assignment
$\mathrm{x} \in \mathrm{L} \Rightarrow \operatorname{Pr}[$ verifier accepts $]=1$
$\mathrm{x} \notin \mathrm{L} \Rightarrow \operatorname{Pr}[$ verifier accepts $]<1$

Proof systems viewpoint

- MAX-k-SAT with gap ε NP-hard \Rightarrow for any language $L \in \mathbf{N P}$ proof system of form:
- given x , compute reduction to MAX-k-SAT: φ_{x}
- expected proof is satisfying assignment for φ_{x}
- verifier picks random clause ("local test") and checks that it is satisfied by the assignment

$$
\begin{aligned}
& x \in L \Rightarrow \operatorname{Pr}[\text { verifier accepts }]=1 \\
& x \notin L \Rightarrow \operatorname{Pr}[\text { verifier accepts }] \leq(1-\varepsilon)
\end{aligned}
$$

- can repeat $\mathrm{O}(1 / \varepsilon)$ times for error $<1 / 2$

Proof systems viewpoint

- can think of reduction showing k-SAT NP-hard as designing a proof system for $\mathbf{N P}$ in which:
- verifier only performs local tests
- can think of reduction showing MAX-k-SAT with gap ε NP-hard as designing a proof system for $\mathbf{N P}$ in which:
- verifier only performs local tests
- invalidity of proof* evident all over: "holographic proof" and an ε fraction of tests notice such invalidity

PCP

- Probabilistically Checkable Proof (PCP) permits novel way of verifying proof:
- pick random local test
- query proof in specified k locations
- accept iff passes test
- fancy name for a NP-hardness reduction

PCP

- $\operatorname{PCP}[\mathbf{r}(\mathbf{n}), q(\mathbf{n})]$: set of languages L with p.p.t. verifier V that has (r, q)-restricted access to a string "proof"
- V tosses $\mathrm{O}(\mathrm{r}(\mathrm{n})$) coins
- V accesses proof in $O(q(\mathrm{n}))$ locations
- (completeness) $\mathrm{x} \in \mathrm{L} \Rightarrow \exists$ proof such that
$\operatorname{Pr}[\mathrm{V}(\mathrm{x}$, proof $)$ accepts $]=1$
- (soundness) $\mathrm{x} \notin \mathrm{L} \Rightarrow \forall$ proof*
$\operatorname{Pr}\left[\mathrm{V}\left(\mathrm{x}\right.\right.$, proof $\left.{ }^{*}\right)$ accepts $] \leq 1 / 2$

PCP

Corollary: MAX-k-SAT is NP-hard to approximate
to within some constant ε.

- using PCP[$\log n, 1]$ protocol for, say, VC
- enumerate all $2^{\mathrm{O}(\log \mathrm{n})}=$ poly (n) sets of queries
- construct a k-CNF φ_{i} for verifier's test on each
- note: k -CNF since function on only k bits
- "YES" VC instance \Rightarrow all clauses satisfiable
- "NO" VC instance \Rightarrow every assignment fails to satisfy at least $1 / 2$ of the $\varphi_{i} \Rightarrow$ fails to satisfy an $\varepsilon=(1 / 2) 2^{-k}$ fraction of clauses.

