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Approximability
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Definitions

• Vertex Cover
• Set Cover
• MaxSat 
• Clique
• Dknapsack
• TSP
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Optimization problem

• Optimization problem P characterized by
– Set of instances I
– Function SOL that associates to any instance the set of 

feasible solutions
– Measure function m that, for any feasible solution, 

provides its positive integer value
– Goal, that is, either MAX or MIN

• An optimal solution is a feasible solution y* such 
that

m(x,y*) = Goal{m(x,y) | y SOL(x)}
• For any instance x, m*(x) denotes optimal measure
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Optimization Problems

• many hard problems (especially NP-hard)
are optimization problems
– e.g. find shortest TSP tour
– e.g. find smallest vertex cover
– e.g. find largest clique

– may be minimization or maximization problem
– “opt” = value of optimal solution
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Approximation Algorithms

• often happy with approximately optimal
solution
– warning: lots of heuristics
– we want approximation algorithm with

guaranteed approximation ratio of
– meaning: on every input x, output is guaranteed 

to have value 
at most *opt for minimization
at least opt/ for maximization
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MINIMUM VERTEX COVER

• INSTANCE: Graph G=(V,E)

• SOLUTION: A subset U of V such that, for 
any edge (u,v), either u is in U or v is in U

• MEASURE: Cardinality of U
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Three problems in one

• Constructive problem: given  an instance, 
compute an optimal solution and its value
– We will study these problems

• Evaluation problem: given an instance, compute 
the optimal value

• Decision problem: given  an instance and an 
integer k, decide whether the optimal value is at 
least (if Goal=MAX) or at most (if Goal=MIN) k
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Class NPO

• Optimization problems such that
– I is recognizable in polynomial time
– Solutions are polynomially bounded (in length) and 

recognizable in polynomial time
– m is computable in polynomial time

• Example: MINIMUM VERTEX COVER

• Theorem : If P is in NPO, then the corresponding 
decision problem is in NP
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Class PO

• NPO problems solvable in polynomial time
• Example: SHORTEST PATH

• An optimization problem P is NP-hard if any 
problem in NP is Turing reducible to P

• Theorem: If the decision problem corresponding 
to a NPO problem P is NP-complete, then P is
NP-hard
– Example: MINIMUM VERTEX COVER

• Corollary: If P NP then PO NPO
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Evaluating versus constructing

• Decision problem is Turing reducible to 
evaluation problem

• Evaluation problem is Turing reducible to 
constructive problem

• Evaluation problem is Turing reducible to decision 
problem
– Binary search on space of possible measure values

• Is constructive problem Turing reducible to 
evaluation problem?

11

MAXIMUM SATISFIABILITY

• INSTANCE: CNF Boolean formula, that is, 
set C of clauses over set of variables V

• SOLUTION: A truth-assignment f to V

• MEASURE: Number of satisfied clauses
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Evaluating versus constructing: MAX SAT
begin

for each variable v
begin

k := MAX SATeval(x);
xTRUE:= formula obtained by setting v to TRUE in x;
xFALSE:= formula obtained by setting v to FALSE in x;
if MAX SATeval(xTRUE) = k then
begin

f(v) := TRUE; x := xTRUE
end
else
begin

f(v) := FALSE; x := xFALSE
end;

return f
end.

Theorem: if the decision problem is NP-complete, then the 
constructive problem is Turing reducible to the decision problem
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Performance ratio
Given an optimization problem P, an instance x and
a feasible solution y, the performance ratio of y with

respect to x is

R(x,y) = max(m(x,y)/m*(x), m*(x)/m(x,y))

An algorithm is said to be an r-approximation
algorithm if, for any instance x, returns a solution 

whose performance ratio is at most r
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MINIMUM BIN PACKING
- INSTANCE: Finite set I of rational numbers 

{a1,…,an} with ai (0,1]

- SOLUTION: Partition {B1,…,Bk} of I into k bins
such that the sum of the numbers in each bin is at 
most 1 

- MEASURE: Cardinality of the partition, i.e., k
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Sequential algorithm
- Polynomial-time 2-approximation algorithm for 

MINIMUM BIN PACKING
- Next Fit algorithm

begin
for each number a

if a fits into the last open bin then assign a to this bin
else open new bin and assign a to this bin

return f
end.
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Proof
- Number of bins used by the algorithm is at most 

2A, where A is the sum of all numbers
- For each pair of consecutive bins, the sum of the 

number included in these two bins is greater than 1
- Each feasible solution uses at least A bins

- Best case each bin is full (i.e., the sum of its numbers 
is 1)

- Performance ratio is at most 2

- Theorem: First Fit Decreasing computes
solution whose measure is at most 1.5m*(x)+1
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Tightness
- Let I={1/2,1/2n,1/2,1/2n,…,1/2,1/2n} contain 4n
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Gavril’s algorithm for vertex cover

- Theorem: Gavril’s algorithm is a polynomial-
time 2-approximation algorithm

begin
U=ø;
for any edge (u,v) do

if (u is not in U) and (v is not in U) then
insert u and v in U;

return U
end.

19

MINIMUM GRAPH COLORING
- INSTANCE: Graph G=(V,E)

- SOLUTION: A coloring of V, that is, function f
such that, for any edge (u,v), f(u) f(v)

- MEASURE: Number of colors, i.e., cardinality of 
the range of f
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Sequential algorithm: bad

begin
order V with respect to the degree; 
for each node v do

if there exists color not used by neighbors of v then assign this 
color to v

else create new color and assign it to v
end.



21

Example
The performance 
ratio is 2

Generalizing, the 
performance ratio 
is n/2, where n is
the number of 
nodes

x1 x2 x3 x4

y1 y2 y3 y4
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Class APX
- NPO problems P that admit a polynomial-time r–

approximation algorithm, for given constant r 1
- P is said to be r-approximable

- Examples: MINIMUM BIN PACKING, 
MAXIMUM SAT, MAXIMUM CUT, 
MINIMUM VERTEX COVER
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Class PTAS
- NPO problems P that admit a polynomial-time r–

approximation algorithm, for any r > 1
- Time must be polynomial in the length of the instance 

but not necessarily in 1/(r-1)
- Time complexity O(n1/(r-1)) or O(21/(r-1)n3)

- P is said to admit a polynomial-time approximation 
scheme

- Example: MINIMUM PARTITION
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The NPO world

NPO

APX MINIMUM BIN PACKING
MAXIMUM SAT
MAXIMUM CUT
MINIMUM VERTEX COVER

PTAS MINIMUM PARTITION

PO
MINIMUM PATH
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Non-Approximability Results
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Summary
- Gap technique

- Examples: MINIMUM GRAPH COLORING, 
MINIMUM TSP, MINIMUM BIN PACKING

- The PCP theorem
- Application: Non-approximability of MAXIMUM 3-

SAT
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The Gap Technique
- P1: NPO minimization problem (same for 

maximization)
- P2: NP-hard decision problem
- Function f that maps instances x of P2 into

instances f(x) of P1 such that:
- If x is a YES-instance, then m*(f(x))=c(x)
- If x is a NO-instance, then m*(f(x)) c(x)(1+g)

- Theorem: No r-approximation algorithm for P1
exists with r<(1+g) (unless P=NP)
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Proof
- A: r-approximation algorithm with r<(1+g)

- If x is a YES-instance, then m*(f(x))=c(x). Hence, 
m(f(x),A(f(x))) rm*(f(x))=rc(x)<c(x)(1+g)

- If x is a NO-instance, then m*(f(x)) c(x)(1+g).
Hence, m(f(x),A(f(x))) c(x)(1+g)

- A allows to decide P2 in polynomial time
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Inapproximability of graph coloring
- NP-hard to decide whether a planar graph can be 

colored with 3 colors
- Any planar graph is 4-colorable

- f(G)=G where G is a planar graph
- If G is 3-colorable, then m*(f(G))=3
- If G is not 3-colorable, then m*(f(G))=4=3(1+1/3)
- Gap: g=1/3

- Theorem: MINIMUM GRAPH COLORING has 
no r-approximation algorithm with r<4/3 (unless 
P=NP)
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Inapproximability of bin packing
- NP-hard to decide whether a set of integers I can

be partitioned into two equal sets
- f(I)=(I,B) where B is equal to half the total sum

- If I is a YES-instance, then m*(f(I))=2
- If I is a NO-instance, then m*(f(I)) 3=2(1+1/2)
- Gap: g=1/2

- Theorem: MINIMUM BIN PACKING has no r-
approximation algorithm with r<3/2 (unless 
P=NP)
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MINIMUM TSP
- INSTANCE: Complete graph G=(V,E), weight 

function on E

- SOLUTION: A tour of all vertices, that is, a 
permutation of V

- MEASURE: Cost of the tour, i.e., 
1 k |V|-1w(v [k], v [k+1])+w(v [|V|], v [1])
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Inapproximability of TSP
- NP-hard to decide whether a graph contains an 

Hamiltonian circuit
- For any g>0, f(G=(V,E))=(G’=(V,V2),w) where 

w(u,v)=1 if (u,v) is in E, otherwise w(u,v)=1+|V|g
- If G has an Hamiltonian circuit, then m*(f(G))=|V|
- If G has no Hamiltonian circuit, then 

m*(f(G)) |V|-1+1+|V|g=|V|(1+g)
- Gap: any g>0

- Theorem: MINIMUM TSP has no r-
approximation algorithm with r>1 (unless P=NP)
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The NPO world (unless P=NP)
NPO

APX
MAXIMUM SAT
MINIMUM VERTEX COVER
MAXIMUM CUT

PTAS MINIMUM PARTITION

PO
MINIMUM PATH

MINIMUM TSP

MINIMUM BIN PACKING

MINIMUM GRAPH COLORING? Certainly not in PTAS 34

Input-Dependent and 
Asymptotic Approximation

35

Summary

- Approximation algorithm for set cover

- Asymptotic approximation scheme for edge 
coloring

36

MINIMUM SET COVER
- INSTANCE: Collection C of subsets of a finite 

set S

- SOLUTION: A set cover for S, i.e., a subset C’ of
C such that every element in S belongs to at least 
one member of C’

- MEASURE: |C’|
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begin
U:=S; C’:=ø;
for any ci do c’i := ci ;
repeat

i:=index of c’with maximum cardinality;
insert ci in C’;
U := U-{elements of c’i };
delete all elements of ci from all c’;

until U:=ø
end.

Johnson’s algorithm
- Polynomial-time logarithmic approximation 

algorithm for MINIMUM SET COVER
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MINIMUM EDGE COLORING
- INSTANCE: Graph G=(V,E)

- SOLUTION: A coloring of E, that is, function f
such that, for any pair of edges e1 and e2 that
share a common endpoint, f(e1) f(e2)

- MEASURE: Number of colors, i.e., cardinality of 
the range of f
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Vizing’s algorithm
- Polynomial-time algorithm to color a graph with 

at most D+1 colors, where D denotes the 
maximum degree of the graph

begin
D:=maximum degree of G;
G’:=(V, E’:=ø); // G’ is clearly colorable with D+1 colors
repeat

add an edge (u,v) of E to E’;
extend coloring of G’ without (u,v)  into coloring of G’
with at most D+1 colors;
E := E-{(u,v)};

until E:=ø
end.
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Asymptotic approximation scheme
- The algorithm returns an edge-coloring with at 

most D+1 colors

- The optimum is at least D

- Hence, performance ratio is at most 
(D+1)/m*(G) D/D+1/m*(G)=1+ 1/m*(G)

- It implies a 2-approximation
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Class F-APX
- Let F be a class of functions

- The class F -APX contains all NPO problems P
that admit a polynomial-time algorithm A such
that, for any instance x of P, R(x, A(x))) f(|x|),
for a given function f F

- P is said to be f(n)-approximable
- A is said to be an f(n)-approximation algorithm
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Class APTAS
- The class APTAS contains all NPO problems P

that admit a polynomial-time algorithm A and a 
constant k such that, for any instance x of P and
for any rational r, R(x, A(x,r))) r+k/m*(x)

- The time complexity of A is polynomial in |x| but 
not necessarily in 1/(r-1)

- A is said to be an asymptotic approximation 
scheme
- A is clearly a (r+k)-approximation algorithm
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The NPO world
NPO

APX MAXIMUM SAT
MINIMUM VERTEX COVER
MAXIMUM CUT

PO MINIMUM PATH

O(n)-APX

O(logn)-APX

MINIMUM GRAPH COLORING

MINIMUM SET COVER

PTAS MINIMUM PARTITION

APTAS MINIMUM EDGE COLORING
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Approximation Preserving 
Reductions
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Summary
- AP-reducibility

- L-reduction technique

- Examples: MAXIMUM CLIQUE, MAXIMUM 
INDEPENDENT SET, MAXIMUM 2-SAT, 
MAXIMUM NAE 3-SAT, MAXIMUM SAT(B)
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x,r f(x),r’

y

r’-approximate
solution of f(x)

g(x,y)

r-approximate
solution of x

Reducibility and NPO problems
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AP-reducibility
- P1 is AP-reducible to P2 if two functions f and g

and a constant c 1 exist such that:
- For any instance x of P1 and for any r, f(x,r) is an 

instance of P2

- For any instance x of P1, for any r, and for any 
solution y of f(x,r), g(x,y,r) is a solution of x

- For any fixed r, f and g are computable in polynomial 
time

- For any instance x of P1, for any r, and for any 
solution y of f(x,r), if R(f(x,r),y) r, then R(x,g(x,y,r))

1+c(r-1)
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Basic properties
- Theorem: If P1 is AP-reducible to P2 and P2 is in 

APX, then P1 is in APX
- If A is an r-approximation algorithm for P2 then

g(x,A(f(x,r)),r)
is a (1+c(r-1))-approximation algorithm for P1

- Theorem: If P1 is AP-reducible to P2 and P2 is in 
PTAS, then P1 is in PTAS
- If A is a polynomial-time approximation scheme for 

P2 then
g(x,A(f(x,r’),r’),r’)

is a polynomial-time approximation scheme for P1,
where r’=1+(r-1)/c
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Basic properties
- Theorem: If P1 is AP-reducible to P2 and P2 is in 

APX, then P1 is in APX
- If A is an r-approximation algorithm for P2 then

g(x,A(f(x,r)),r)
is a (1+c(r-1))-approximation algorithm for P1

- Theorem: If P1 is AP-reducible to P2 and P2 is in 
PTAS, then P1 is in PTAS
- If A is a polynomial-time approximation scheme for 

P2 then
g(x,A(f(x,r’),r’),r’)

is a polynomial-time approximation scheme for P1,
where r’=1+(r-1)/c
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L-reducibility
- P1 is L-reducible to P2 if two functions f and g

and two constants a and b exist such that:
- For any instance x of P1, f(x) is an instance of P2

- For any instance x of P1, and for any solution y of f(x),
g(x,y) is a solution of x

- f and g are computable in polynomial time 
- For any instance x of P1, m*(f(x)) am*(x)
- For any instance x of P1 and for any solution y of f(x),

|m*(x)-m(x,g(x,y))| b|m*(f(x))-m(f(x),y)|
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Basic property of L-reductions
- Theorem: If P1 is L-reducible to P2 and P2 is in 

PTAS, then P1 is in PTAS
- Relative error in P1 is bounded by ab times the 

relative error in P2

- However, in general, it is not true that if P1 is L-
reducible to P2 and P2 is in APX, then P1 is in 
APX
- The problem is that the relation between r and r’ may

be non-invertible
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Inapproximability of clique
- Theorem: MAXIMUM 3-SAT is L-reducible to 

MAXIMUM CLIQUE
- f(C,U) is the graph G(V,E) where V={(l,c) : l is in 

clause c} and E={((l,c),(l’,c’)) : l l’ and c c’}
- g(C,U,V’) is a truth-assignment t such that t(u) is true 

if and only if a clause c exists for which (u,c) is in V’
- a=b=1

- t satisfies at least |V’| clauses
- optimum measures are equal

- Corollary: MAXIMUM CLIQUE does not 
belong to APX
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Inapproximability of independent set
- Theorem: MAXIMUM CLIQUE is AP-reducible 

to MAXIMUM INDEPENDENT SET
- f(G=(V,E)) = Gc=(V,V2-E), which is called the 

complement graph
- g(G,U)=U
- c=1

- Each clique in G is an independent set in Gc

- Corollary: MAXIMUM INDEPENDENT SET 
does not belong to APX
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Inapproximability of 2-satisfiability
- Theorem: MAXIMUM 3-SAT is L-reducible to 

MAXIMUM 2-SAT
- f transforms each clause x or y or z into the following 

set of 10 clauses where i is a new variable:
- x, y, z, i, not x or not y, not x or not z, not y or not z,

x or not i, y or not i, z or not i
- g(C,t)=restriction of t to original variables
- a=13, b=1

- m*(f(x))=6|C|+m*(x) 12m*(x)+m*(x)=13m*(x)
- m*(f(x))-m(f(x),t) m*(x)-m(x,g(C,t))

- Corollary: MAXIMUM 2-SAT is not in PTAS
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MAXIMUM NOT-ALL-EQUAL SAT
- INSTANCE: CNF Boolean formula, that is, set C

of clauses over set of variables V

- SOLUTION: A truth-assignment f to V

- MEASURE: Number of clauses that contain both 
a false and a true literal
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Inapproximability of NAE 2-
satisfiability

- Theorem: MAXIMUM 2-SAT is L-reducible to 
MAXIMUM NAE 3-SAT
- f transforms each clause x or y into new clause x or y

or z where z is a new global variable 
- g(C,t)=restriction of t to original variables
- a=1, b=1

- z may be assumed false
- each new clause is not-all-equal satisfied iff the original 

clause is satisfied

- Corollary: MAXIMUM NAE 3-SAT is not in 
PTAS
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Inapproximability of MAXIMUM 
SAT(B)

- Standard reduction
- If a variable y occurs h times, create new h variables

y[i]
- Substitute ith occurrence with y[i]
- Add (not y[i] or y[i+1]) and (not y[h] or y[1])

- Not useful: deleting one new clause may increase 
the measure arbitrarily
- The cycle of implications can be easily broken
- If we add all possible implications (that is, we use a 

clique), then no the number of occurrences is not 
bounded and there is no linear relation between 
optimal measures
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Expander graphs
- A graph G=(V,E) is an expander if, for every 

subset S of the nodes, the corresponding cut has 
measure at least

min{|S|, |V-S|}
- A cycle is not an expander
- A clique is an expander (but has unbounded degree)

- Theorem: A constant n0 and an algorithm A exist
such that, for any k> n0, A(k) constructs in time 
polynomial in k a 14-regular expander graph Ek
with k nodes.
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AP-reduction through expanders
- We may assume that h is greater than n0 (it

suffices to replicate any clause n0 times)
- For any i and j, if (i,j) is an edge of Eh then add 

(not y[i] or y[j])  and  (not y[j] or y[i])
- Globally, we have m + 14N clauses where N is

the sum of the hs
- Each variable occurs in exactly 28 new clauses 

and 1 old clause: hence, B=29
- Starting from B=29, it is possible to arrive at B=3
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Proof
- Claim: Any solution must satisfy all new clauses 

(that is, gives the same value to all copies of the 
same variable)
- From the expansion property, if we change the truth 

value of the copies in the smaller set we do not loose 
anything

- a=85
- m*(f(x)) = 14N+m*(x) 42m+m*(x) 85m*(x)

- b=1
- m*(x)-m(x,t)=14N+m*(f(x))-14N-m(f(x),t)=m*(f(x))-

m(f(x),t)
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Other inapproximability results
- Theorem: MINIMUM VERTEX COVER is not 

in PTAS
- Reduction from MAXIMUM 3-SAT(3)

- Theorem: MAXIMUM CUT is not in PTAS
- Reduction from MAXIMUM NAE 3-SAT

- Theorem: MINIMUM GRAPH COLORING is 
not in APX
- Reduction from variation of independent set

62

The NPO world if P NP
NP
O

APX
MAXIMUM SATISFIABILITY
MINIMUM VERTEX COVER
MAXIMUM CUT

PTAS MINIMUM PARTITION

PO MINIMUM PATH

MINIMUM TSP
MAXIMUM INDEPENDENT SET
MAXIMUM CLIQUE
MINIMUM GRAPH COLORING

MINIMUM BIN PACKING

Poly-APX
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Approximation Algorithms

• Example approximation algorithm:
– Recall:

Vertex Cover (VC): given a graph G, what is the 
smallest subset of vertices that touch every 
edge?

– NP-complete
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Approximation Algorithms

• Approximation algorithm for VC:
– pick an edge (x, y), add vertices x and y to VC
– discard edges incident to x or y; repeat.

• Claim: approximation ratio is 2.
• Proof: 

– an optimal VC must include at least one 
endpoint of each edge considered 

– therefore 2*opt actual
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Approximation Algorithms

• diverse array of ratios achievable
• some examples:

– (min) Vertex Cover: 2
– MAX-3-SAT (find assignment satisfying 

largest # clauses): 8/7
– (min) Set Cover: ln n
– (max) Clique: n/log2n
– (max) Knapsack: (1 + ) for any > 0 
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Approximation Algorithms

(max) Knapsack: (1 + ) for any > 0 

• called Polynomial Time Approximation 
Scheme (PTAS)
– algorithm runs in poly time for every fixed >0
– poor dependence on allowed

• If all NP optimization problems had a 
PTAS, almost like P = NP (!)
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Approximation Algorithms

• A job for complexity: How to explain failure to do 
better than ratios on previous slide?
– just like: how to explain failure to find poly-time 

algorithm for SAT...
– first guess: probably NP-hard
– what is needed to show this?

• “gap-producing” reduction from NP-complete
problem L1 to L2
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Approximation Algorithms

• “gap-producing” reduction from NP-
complete problem L1 to L2

no

yes
L1

L2 (min. problem)

f opt
k

rk
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Gap producing reductions

• r-gap-producing reduction:
– f computable in poly time
– x L1 opt(f(x)) k
– x L1 opt(f(x)) > rk
– for max. problems use “ k” and “< k/r”

• Note: target problem is not a language
– promise problem (yes no not all strings)
– “promise”: instances always from (yes no)
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Gap producing reductions

• Main purpose:
– r-approximation algorithm for L2 distinguishes between 

f(yes) and f(no); can use to decide L1
– “NP-hard to approximate to within r”

no

yes

L1

f
k

rk yes

no

L1

f
k/r

k

L2 (min.) L2 (max.)
yes

no yes

no
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Gap preserving reductions

• gap-producing reduction difficult (more later)

• but gap-preserving reductions easier

f
k

rk
k’

r’k’Warning:  many 
reductions not
gap-preserving

yes

no

yes

no

L1 (min.)
L2 (min.)
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Gap preserving reductions

• Example gap-preserving reduction:
– reduce MAX-k-SAT with gap 
– to MAX-3-SAT with gap ’
– “MAX-k-SAT is NP-hard to approx. within MAX-

3-SAT is NP-hard to approx. within ’ ”

• MAXSNP (PY) – a class of problems reducible to each 
other in this way
– PTAS for MAXSNP-complete problem iff PTAS for 

all problems in MAXSNP

constants
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MAX-k-SAT

• Missing link: first gap-producing reduction
– history’s guide

it should have something to do with SAT
• Definition: MAX-k-SAT with gap 

– instance: k-CNF
– YES: some assignment satisfies all clauses
– NO: no assignment satisfies more than (1 – )

fraction of clauses
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Proof systems viewpoint

• k-SAT NP-hard for any language L
NP proof system of form:
– given x, compute reduction to k-SAT: x

– expected proof is satisfying assignment for x

– verifier picks random clause (“local test”) and 
checks that it is satisfied by the assignment 

x L Pr[verifier accepts] = 1
x L Pr[verifier accepts] < 1
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Proof systems viewpoint

• MAX-k-SAT with gap NP-hard for any 
language L NP proof system of form:
– given x, compute reduction to MAX-k-SAT: x

– expected proof is satisfying assignment for x

– verifier picks random clause (“local test”) and checks 
that it is satisfied by the assignment 

x L Pr[verifier accepts] = 1
x L Pr[verifier accepts] (1 – )

– can repeat O(1/ ) times for error < ½
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Proof systems viewpoint

• can think of reduction showing k-SAT NP-hard as 
designing a proof system for NP in which:
– verifier only performs local tests

• can think of reduction showing MAX-k-SAT with 
gap NP-hard as designing a proof system for NP
in which:
– verifier only performs local tests
– invalidity of proof* evident all over: “holographic 

proof” and an fraction of tests notice such invalidity
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PCP

• Probabilistically Checkable Proof (PCP)
permits novel way of verifying proof:
– pick random local test 
– query proof in specified k locations
– accept iff passes test

• fancy name for a NP-hardness reduction
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PCP

• PCP[r(n),q(n)]: set of languages L with p.p.t. 
verifier V that has (r, q)-restricted access to a 
string “proof”
– V tosses O(r(n)) coins
– V accesses proof in O(q(n)) locations
– (completeness) x L proof such that

Pr[V(x, proof) accepts] = 1
– (soundness) x L proof*

Pr[V(x, proof*) accepts] ½
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PCP

• Two observations:
– PCP[1, poly n] = NP

proof?
– PCP[log n, 1] NP

proof?

The PCP Theorem (AS, ALMSS): 
PCP[log n, 1] = NP.
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Corollary: MAX-k-SAT is NP-hard to approximate 
to within some constant .
– using PCP[log n, 1] protocol for, say, VC 
– enumerate all 2O(log n) = poly(n) sets of queries
– construct a k-CNF i for verifier’s test on each 

• note: k-CNF since function on only k bits
– “YES” VC instance all clauses satisfiable
– “NO” VC instance  every assignment fails to satisfy 

at least ½ of the i fails to satisfy an = (½)2-k

fraction of clauses.


