Definitions • Vertex Cover Approximability • Set Cover • MaxSat • Clique • Dknapsack $\mu\Pi\lambda\forall$ • TSP 1 2 Optimization problem **Optimization Problems** • Optimization problem P characterized by • many hard problems (especially NP-hard) – Set of instances I are optimization problems - Function SOL that associates to any instance the set of - e.g. find *shortest* TSP tour feasible solutions

- Measure function *m* that, for any feasible solution,

• An optimal solution is a feasible solution y^* such

• For any instance $x, m^*(x)$ denotes optimal measure

 $m(x, y^*) = \operatorname{Goal}\{m(x, y) \mid y \in \operatorname{SOL}(x)\}$

provides its positive integer value

- Goal, that is, either MAX or MIN

that

- e.g. find *smallest* vertex cover
- e.g. find *largest* clique
- may be minimization or maximization problem
 "opt" = value of optimal solution

Approximation Algorithms

- often happy with approximately optimal solution
 - warning: lots of heuristics
 - we want approximation algorithm with guaranteed approximation ratio of ρ
 - meaning: on every input x, output is guaranteed to have value

at most ρ^* opt for minimization at least opt/ ρ for maximization

MINIMUM VERTEX COVER

- INSTANCE: Graph G=(V,E)
- SOLUTION: A subset U of V such that, for any edge (u,v), either u is in U or v is in U
- MEASURE: Cardinality of U

Three problems in one

- **Constructive problem**: given an instance, compute an optimal solution and its value
 - We will study these problems
- **Evaluation problem**: given an instance, compute the optimal value
- **Decision problem**: given an instance and an integer *k*, decide whether the optimal value is at least (if Goal=MAX) or at most (if Goal=MIN) *k*

Class NPO

- Optimization problems such that
 - -I is recognizable in polynomial time
 - Solutions are polynomially bounded (in length) and recognizable in polynomial time
 - -m is computable in polynomial time
- Example: MINIMUM VERTEX COVER
- **Theorem** : If P is in NPO, then the corresponding decision problem is in NP

7

5

Class PO

- NPO problems solvable in polynomial time
- Example: SHORTEST PATH
- An optimization problem P is *NP-hard* if any problem in NP is Turing reducible to P
- **Theorem**: If the decision problem corresponding to a NPO problem P is *NP-complete*, then P is *NP-hard*
 - Example: MINIMUM VERTEX COVER
- **Corollary**: If $P \neq NP$ then $PO \neq NPO$

Evaluating versus constructing

- Decision problem is Turing reducible to evaluation problem
- Evaluation problem is Turing reducible to constructive problem
- Evaluation problem is Turing reducible to decision problem
 - Binary search on space of possible measure values
- Is constructive problem Turing reducible to evaluation problem?

10

MAXIMUM SATISFIABILITY

- INSTANCE: CNF Boolean formula, that is, set *C* of clauses over set of variables *V*
- SOLUTION: A truth-assignment *f* to *V*
- MEASURE: Number of satisfied clauses

Evaluating versus constructing: MAX SAT

begin		
-	for each	variable v
	begin	
		$k := MAX SAT_{eval}(x);$
		x_{TRUE} := formula obtained by setting v to TRUE in x;
		x_{FALSE} = formula obtained by setting v to FALSE in x;
		if MAX SAT _{eval} $(x_{\text{TRUE}}) = k$ then
		begin
		$f(v) := \text{TRUE}; x := x_{\text{TRUE}}$
		end
		else
		begin
		$f(v) := FALSE; x := x_{FALSE}$
		end;
	return f	
end.		

Theorem: if the decision problem is NP-complete, then the constructive problem is Turing reducible to the decision problem?

Performance ratio

Given an optimization problem P, an instance x and a feasible solution y, the performance ratio of y with respect to x is

 $R(x,y) = \max(m(x,y)/m^{*}(x), m^{*}(x)/m(x,y))$

An algorithm is said to be an r-approximation algorithm if, for any instance x, returns a solution whose performance ratio is at most r

MINIMUM BIN PACKING

- INSTANCE: Finite set *I* of rational numbers $\{a_1, ..., a_n\}$ with $a_i \in (0, 1]$
- SOLUTION: Partition {B₁,...,B_k} of *I* into *k* bins such that the sum of the numbers in each bin is at most 1
- MEASURE: Cardinality of the partition, i.e., *k*

Sequential algorithm

- Polynomial-time 2-approximation algorithm for MINIMUM BIN PACKING
 - Next Fit algorithm

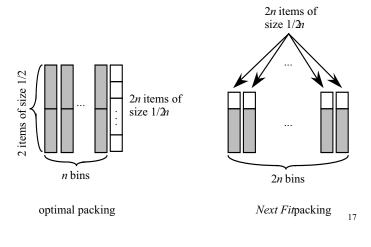
begin		
-	for each number a	
	if a fits into the last open bin then assign a to this	bin
	else open new bin and assign a to this bin	
	return f	
end.		

Proof

- Number of bins used by the algorithm is at most 2*A*, where *A* is the sum of all numbers
 - For each pair of consecutive bins, the sum of the number included in these two bins is greater than 1
- Each feasible solution uses at least A bins
 - Best case each bin is full (i.e., the sum of its numbers is 1)
- Performance ratio is at most 2
- **Theorem**: *First Fit Decreasing* computes solution whose measure is at most $1.5m^{*}(x)+1^{16}$

Tightness

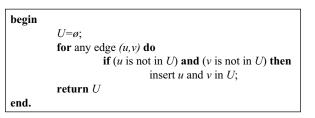
- Let $I = \{1/2, 1/2n, 1/2, 1/2n, \dots, 1/2, 1/2n\}$ contain 4n items



MINIMUM GRAPH COLORING

- INSTANCE: Graph G=(V,E)
- SOLUTION: A coloring of *V*, that is, function *f* such that, for any edge (u,v), $f(u) \neq f(v)$
- MEASURE: Number of colors, i.e., cardinality of the range of *f*

Gavril's algorithm for vertex cover



- **Theorem**: Gavril's algorithm is a polynomialtime 2-approximation algorithm

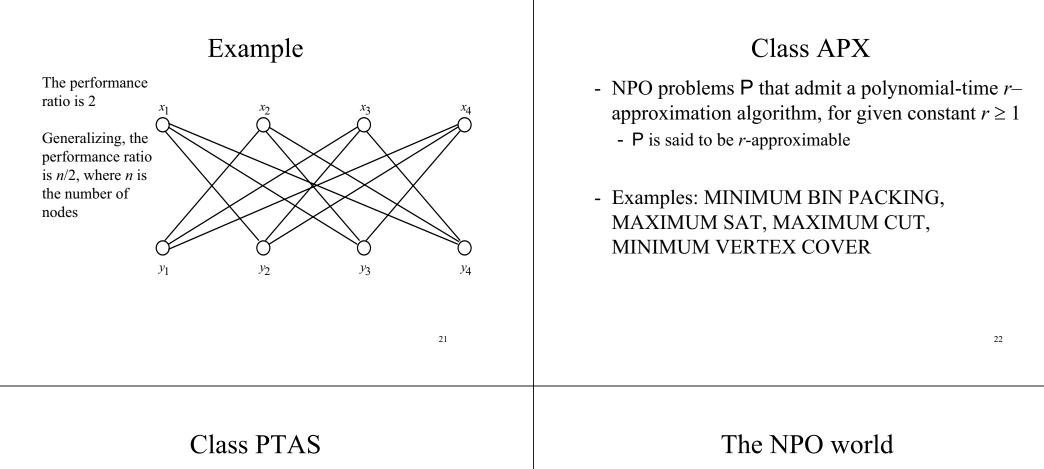
Sequential algorithm: bad

order V with respect to the degree; for each node v do if there exists color not u

if there exists color not used by neighbors of v then assign this color to v
 else create new color and assign it to v

end.

begin



- NPO problems P that admit a polynomial-time r-approximation algorithm, for any r > 1
 - Time must be polynomial in the length of the instance but not necessarily in 1/(r-1)
 - Time complexity $O(n^{1/(r-1)})$ or $O(2^{1/(r-1)}n^3)$
 - P is said to admit a polynomial-time approximation scheme
- Example: MINIMUM PARTITION

NPO	
APX	MINIMUM BIN PACKING MAXIMUM SAT MAXIMUM CUT MINIMUM VERTEX COVER
PTAS	MINIMUM PARTITION
РО	MINIMUM PATH

Non-Approximability Results	 Summary Gap technique Examples: MINIMUM GRAPH COLORING, MINIMUM TSP, MINIMUM BIN PACKING The PCP theorem Application: Non-approximability of MAXIMUM 3-SAT
25	26
The Gap Technique	Proof
 P₁: NPO minimization problem (same for maximization) 	- A: <i>r</i> -approximation algorithm with $r < (1+g)$
 P₂: NP-hard decision problem Function <i>f</i> that maps instances <i>x</i> of P₂ into instances <i>f</i>(<i>x</i>) of P₁ such that: 	- If x is a YES-instance, then $m^*(f(x))=c(x)$. Hence, $m(f(x),A(f(x))) \le rm^*(f(x))=rc(x) \le c(x)(1+g)$
 If x is a YES-instance, then m*(f(x))=c(x) If x is a NO-instance, then m*(f(x)) ≥ c(x)(1+g) 	- If x is a NO-instance, then $m^*(f(x)) \ge c(x)(1+g)$. Hence, $m(f(x), A(f(x))) \ge c(x)(1+g)$
 Theorem: No <i>r</i>-approximation algorithm for P₁ exists with <i>r</i><(1+g) (unless P=NP) 	- A allows to decide P_2 in polynomial time

Inapproximability of graph coloring

- NP-hard to decide whether a planar graph can be colored with 3 colors
 - Any planar graph is 4-colorable
- f(G)=G where G is a planar graph
 - If G is 3-colorable, then $m^*(f(G))=3$
 - If *G* is not 3-colorable, then $m^{*}(f(G))=4=3(1+1/3)$
 - Gap: g=1/3
- Theorem: MINIMUM GRAPH COLORING has no *r*-approximation algorithm with *r*<4/3 (unless P=NP)

MINIMUM TSP

- INSTANCE: Complete graph *G*=(*V*,*E*), weight function on *E*
- SOLUTION: A tour of all vertices, that is, a permutation π of *V*
- MEASURE: Cost of the tour, i.e., $\sum_{1 \le k \le |V|-1} w(v_{\pi[k]}, v_{\pi[k+1]}) + w(v_{\pi[|V|]}, v_{\pi[1]})$

Inapproximability of bin packing

- NP-hard to decide whether a set of integers *I* can be partitioned into two equal sets
- f(I)=(I,B) where *B* is equal to half the total sum
 - If *I* is a YES-instance, then $m^*(f(I))=2$
 - If *I* is a NO-instance, then $m^*(f(I)) \ge 3=2(1+1/2)$
 - Gap: *g*=1/2
- Theorem: MINIMUM BIN PACKING has no *r*-approximation algorithm with *r*<3/2 (unless P=NP)

Inapproximability of TSP

- NP-hard to decide whether a graph contains an Hamiltonian circuit
- For any g>0, $f(G=(V,E))=(G'=(V,V^2),w)$ where w(u,v)=1 if (u,v) is in *E*, otherwise w(u,v)=1+|V|g
 - If G has an Hamiltonian circuit, then $m^*(f(G)) = |V|$
 - If *G* has no Hamiltonian circuit, then $m^*(f(G)) \ge |V|-1+1+|V|g=|V|(1+g)$
 - Gap: any *g*>0
- **Theorem:** MINIMUM TSP has no *r*approximation algorithm with r>1 (unless P=NP)

NPO	MINIMUM TSP		
APX	MINIMUM BIN PACKING MAXIMUM SAT MINIMUM VERTEX COVER MAXIMUM CUT		Input-Dependent and Asymptotic Approximation
PTAS	MINIMUM PARTITION		
РО	MINIMUM PATH		
MINIMUM	GRAPH COLORING? Certainly not in PTA	33	
MINIMUM	GRAPH COLORING? Certainly not in PTA	33	MINIMUM SET COVER
			MINIMUM SET COVER TANCE: Collection <i>C</i> of subsets of a finit
Approxima	Summary	- INS set S - SOI C su	MINIMUM SET COVER TANCE: Collection <i>C</i> of subsets of a finit

Johnson's algorithm

- Polynomial-time logarithmic approximation algorithm for MINIMUM SET COVER

begin	
	U:=S; C':=ø;
	for any c_i do $c'_i := c_i$;
	repeat
	<i>i</i> :=index of <i>c</i> 'with maximum cardinality;
	insert c_i in C';
	$U := U$ -{elements of c'_i };
	delete all elements of c_i from all c' ;
	until U:=ø
end.	

MINIMUM EDGE COLORING

- INSTANCE: Graph G=(V,E)
- SOLUTION: A coloring of *E*, that is, function *f* such that, for any pair of edges e_1 and e_2 that share a common endpoint, $f(e_1) \neq f(e_2)$
- MEASURE: Number of colors, i.e., cardinality of the range of *f*

Vizing's algorithm

- Polynomial-time algorithm to color a graph with at most *D*+1 colors, where *D* denotes the maximum degree of the graph

```
beginD:=maximum degree of G;<br/>G':=(V, E':=\emptyset); // G' is clearly colorable with D+1 colors<br/>repeat<br/>add an edge (u,v) of E to E';<br/>extend coloring of G' without (u,v) into coloring of G'<br/>with at most D+1 colors;<br/>E := E-\{(u,v)\};<br/>until E:=\emptysetend.
```

Asymptotic approximation scheme

- The algorithm returns an edge-coloring with at most *D*+1 colors
- The optimum is at least D
- Hence, performance ratio is at most $(D+1)/m^*(G) \le D/D+1/m^*(G)=1+1/m^*(G)$
 - It implies a 2-approximation

Class F-APX

- Let F be a class of functions
- The class F -APX contains all NPO problems P that admit a polynomial-time algorithm A such that, for any instance x of P, $R(x, A(x)) \le f(|x|)$, for a given function $f \in F$
- P is said to be f(n)-approximable
- A is said to be an f(n)-approximation algorithm

41

Class APTAS

- The class APTAS contains all NPO problems P that admit a polynomial-time algorithm A and a constant *k* such that, for any instance *x* of P and for any rational *r*, $R(x, A(x,r)) \le r + k/m^*(x)$
- The time complexity of A is polynomial in |x| but not necessarily in 1/(*r*-1)
- A is said to be an *asymptotic approximation scheme*
 - A is clearly a (r+k)-approximation algorithm

The NPO world

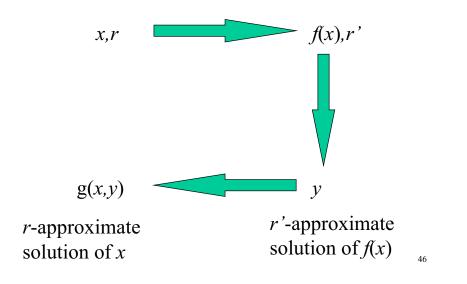
NPO	
O(n)-APX	MINIMUM GRAPH COLORING
O(logn)-APX	MINIMUM SET COVER
APX	MAXIMUM SAT MINIMUM VERTEX COVER MAXIMUM CUT
APTAS	MINIMUM EDGE COLORING
PTAS	MINIMUM PARTITION
РО	MINIMUM PATH

Approximation Preserving Reductions

Summary

- AP-reducibility
 - L-reduction technique
- Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2-SAT, MAXIMUM NAE 3-SAT, MAXIMUM SAT(*B*)

Reducibility and NPO problems



AP-reducibility

45

- P_1 is AP-reducible to P_2 if two functions f and g and a constant $c \ge 1$ exist such that:
 - For any instance x of P₁ and for any r, f(x,r) is an instance of P₂
 - For any instance x of P₁, for any r, and for any solution y of f(x,r), g(x,y,r) is a solution of x
 - For any fixed *r*, *f* and *g* are computable in polynomial time
 - For any instance x of P_1 , for any r, and for any solution y of f(x,r), if $R(f(x,r),y) \le r$, then $R(x,g(x,y,r)) \le 1+c(r-1)$

Basic properties

- **Theorem:** If P_1 is AP-reducible to P_2 and P_2 is in APX, then P_1 is in APX
 - If A is an *r*-approximation algorithm for P₂ then g(x,A(f(x,r)),r)
 is a (1+c(r-1))-approximation algorithm for P₁
- **Theorem:** If P_1 is AP-reducible to P_2 and P_2 is in PTAS, then P_1 is in PTAS
 - If A is a polynomial-time approximation scheme for P_2 then

g(x, A(f(x, r'), r'), r')is a polynomial-time approximation scheme for $P_{1_{48}}$ where r'=1+(r-1)/c

Basic properties

- Theorem: If P₁ is AP-reducible to P₂ and P₂ is in APX, then P₁ is in APX
 - If A is an *r*-approximation algorithm for P_2 then g(x,A(f(x,r)),r)is a (1+c(r-1))-approximation algorithm for P_1
- **Theorem:** If P_1 is AP-reducible to P_2 and P_2 is in PTAS, then P_1 is in PTAS
 - If A is a polynomial-time approximation scheme for P_2 then

g(x,A(f(x,r'),r'),r')is a polynomial-time approximation scheme for P_{143} where r'=1+(r-1)/c

Basic property of L-reductions

- **Theorem:** If P_1 is L-reducible to P_2 and P_2 is in PTAS, then P_1 is in PTAS
 - Relative error in P_1 is bounded by *ab* times the relative error in P_2
- However, in general, it is not true that if P₁ is L-reducible to P₂ and P₂ is in APX, then P₁ is in APX
 - The problem is that the relation between *r* and *r*' may be non-invertible

L-reducibility

- P₁ is L-reducible to P₂ if two functions f and g and two constants a and b exist such that:
 - For any instance x of P_1 , f(x) is an instance of P_2
 - For any instance x of P_1 , and for any solution y of f(x), g(x,y) is a solution of x
 - f and g are computable in polynomial time
 - For any instance x of P_1 , $m^*(f(x)) \le am^*(x)$
 - For any instance x of P_1 and for any solution y of f(x), $|m^*(x)-m(x,g(x,y))| \le b|m^*(f(x))-m(f(x),y)|$

50

Inapproximability of clique

- **Theorem:** MAXIMUM 3-SAT is L-reducible to MAXIMUM CLIQUE
 - f(C,U) is the graph G(V,E) where $V=\{(l,c) : l \text{ is in } c \text{ lause } c\}$ and $E=\{((l,c),(l',c')) : l \neq l' \text{ and } c \neq c'\}$
 - g(C,U,V') is a truth-assignment t such that t(u) is true if and only if a clause c exists for which (u,c) is in V'
 - *a*=*b*=1
 - t satisfies at least |V'| clauses
 - optimum measures are equal
- **Corollary:** MAXIMUM CLIQUE does not belong to APX

Inapproximability of independent set

- **Theorem:** MAXIMUM CLIQUE is AP-reducible to MAXIMUM INDEPENDENT SET
 - f(G=(V,E)) = G^c=(V,V²-E), which is called the complement graph
 - g(G,U)=U
 - *c*=1
 - Each clique in G is an independent set in G^c
- Corollary: MAXIMUM INDEPENDENT SET does not belong to APX

53

Inapproximability of 2-satisfiability

- Theorem: MAXIMUM 3-SAT is L-reducible to MAXIMUM 2-SAT
 - *f* transforms each clause *x* or *y* or *z* into the following set of 10 clauses where *i* is a new variable:
 - x, y, z, i, not x or not y, not x or not z, not y or not z, x or not i, y or not i, z or not i
 - g(C,t)=restriction of *t* to original variables
 - *a*=13, *b*=1
 - $m^{*}(f(x))=6|C|+m^{*}(x) \le 12m^{*}(x)+m^{*}(x)=13m^{*}(x)$
 - $m^{*}(f(x))-m(f(x),t) \le m^{*}(x)-m(x,g(C,t))$
- Corollary: MAXIMUM 2-SAT is not in PTAS

MAXIMUM NOT-ALL-EQUAL SAT

- INSTANCE: CNF Boolean formula, that is, set *C* of clauses over set of variables *V*
- SOLUTION: A truth-assignment f to V
- MEASURE: Number of clauses that contain both a false and a true literal

Inapproximability of NAE 2satisfiability

- **Theorem:** MAXIMUM 2-SAŤ is L-reducible to MAXIMUM NAE 3-SAT
 - *f* transforms each clause *x* or *y* into new clause *x* or *y* or *z* where *z* is a new global variable
 - g(C,t)=restriction of *t* to original variables
 - *a*=1, *b*=1
 - *z* may be assumed false
 - each new clause is not-all-equal satisfied iff the original clause is satisfied
- Corollary: MAXIMUM NAE 3-SAT is not in PTAS

Inapproximability of MAXIMUM SAT(*B*)

- Standard reduction
 - If a variable *y* occurs *h* times, create new *h* variables *y*[*i*]
 - Substitute *i*th occurrence with *y*[*i*]
 - Add (not y[i] or y[i+1]) and (not y[h] or y[1])
- Not useful: deleting one new clause may increase the measure arbitrarily
 - The cycle of implications can be easily broken
 - If we add all possible implications (that is, we use a clique), then no the number of occurrences is not bounded and there is no linear relation between 57 optimal measures

AP-reduction through expanders

- We may assume that *h* is greater than n₀ (it suffices to replicate any clause n₀ times)
- For any *i* and *j*, if (i,j) is an edge of E_h then add (**not** y[i] **or** y[j]) and (**not** y[j] **or** y[i])
- Globally, we have m + 14N clauses where N is the sum of the hs
- Each variable occurs in exactly 28 new clauses and 1 old clause: hence, *B*=29
 - Starting from *B*=29, it is possible to arrive at *B*=3

Expander graphs

A graph G=(V,E) is an expander if, for every subset S of the nodes, the corresponding cut has measure at least

 $\min\{|S|, |V-S|\}$

- A cycle is not an expander
- A clique is an expander (but has unbounded degree)
- **Theorem:** A constant n_0 and an algorithm A exist such that, for any $k > n_0$, A(k) constructs in time polynomial in k a 14-regular expander graph E_k with k nodes.

58

Proof

- **Claim:** Any solution must satisfy all new clauses (that is, gives the same value to all copies of the same variable)
 - From the expansion property, if we change the truth value of the copies in the smaller set we do not loose anything
- *a*=85

-
$$m^{*}(f(x)) = 14N + m^{*}(x) \ge 42m + m^{*}(x) \ge 85m^{*}(x)$$

- *b*=1
 - $m^{*}(x)-m(x,t)=14N+m^{*}(f(x))-14N-m(f(x),t)=m^{*}(f(x))-m(f(x),t)$

Other inapproximability results

- **Theorem:** MINIMUM VERTEX COVER is not in PTAS
 - Reduction from MAXIMUM 3-SAT(3)
- Theorem: MAXIMUM CUT is not in PTAS
 Reduction from MAXIMUM NAE 3-SAT
- **Theorem:** MINIMUM GRAPH COLORING is not in APX
 - Reduction from variation of independent set

The NPO world if $P \neq NP$

NP Poly-APX	MINIMUM TSP MAXIMUM INDEPENDENT SET MAXIMUM CLIQUE MINIMUM GRAPH COLORING
АРХ	MINIMUM BIN PACKING MAXIMUM SATISFIABILITY MINIMUM VERTEX COVER MAXIMUM CUT
PTAS	MINIMUM PARTITION
РО	MINIMUM PATH

Approximation Algorithms

- Example approximation algorithm: - Recall:
 - Vertex Cover (VC): given a graph G, what is the *smallest* subset of vertices that touch every edge?
 - **NP-**complete

Approximation Algorithms

- Approximation algorithm for VC:
 - pick an edge (x, y), add vertices x and y to VC
 - discard edges incident to x or y; repeat.
- Claim: approximation ratio is 2.
- Proof:
 - an optimal VC must include at least one endpoint of each edge considered
 - therefore $2*opt \ge actual$

Approximation Algorithms

- diverse array of ratios achievable
- some examples:
 - (min) Vertex Cover: 2
 - MAX-3-SAT (find assignment satisfying largest # clauses): 8/7
 - (min) Set Cover: ln n
 - (max) Clique: n/log²n
 - (max) Knapsack: $(1 + \varepsilon)$ for any $\varepsilon > 0$

Approximation Algorithms

(max) Knapsack: $(1 + \varepsilon)$ for any $\varepsilon > 0$

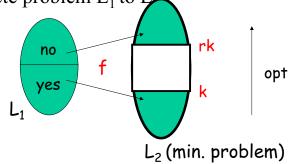
- called Polynomial Time Approximation Scheme (PTAS)
 - algorithm runs in poly time for every fixed $\epsilon > 0$ - poor dependence on ϵ allowed
- If all NP optimization problems had a PTAS, almost like P = NP (!)

Approximation Algorithms

- A job for complexity: How to explain failure to do better than ratios on previous slide?
 - just like: how to explain failure to find poly-time algorithm for SAT...
 - first guess: probably NP-hard
 - what is needed to show this?
- "gap-producing" reduction from NP-complete problem L₁ to L₂

Approximation Algorithms

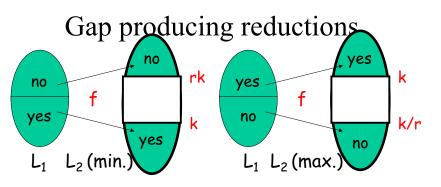
• "gap-producing" reduction from NPcomplete problem L₁ to L



65

Gap producing reductions

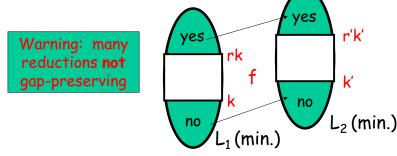
- r-gap-producing reduction:
 - f computable in poly time
 - $-\,x\,\in\,L_1\,{\Rightarrow}\,\text{opt}(f(x))\,{\leq}\,k$
 - $-x \notin L_1 \Rightarrow opt(f(x)) > rk$
 - for max. problems use " $\geq k$ " and "< k/r"
- Note: target problem is not a language
 - **promise problem** (yes \cup no *not* all strings)
 - "promise": instances always from (yes \cup no)



- Main purpose:
 - r-approximation algorithm for L_2 distinguishes between f(yes) and f(no); can use to decide L_1
 - "NP-hard to approximate to within r"

Gap preserving reductions

- gap-producing reduction difficult (more later)
- but gap-preserving reductions easier



Gap preserving reductions

- Example **gap-preserving** reduction:
 - reduce MAX-k-SAT with gap ε constants
 - to MAX-3-SAT with gap ϵ '
 - "MAX-k-SAT is NP-hard to approx. within $\varepsilon \Rightarrow$ MAX-3-SAT is NP-hard to approx. within ε '"
- MAXSNP (PY) a class of problems reducible to each other in this way
 - PTAS for MAXSNP-complete problem iff PTAS for all problems in MAXSNP

71

69

MAX-k-SAT

• Missing link: first gap-producing reduction – history's guide

it should have something to do with SAT

- Definition: MAX-k-SAT with gap ε
 - instance: k-CNF $\boldsymbol{\phi}$
 - YES: some assignment satisfies all clauses
 - NO: no assignment satisfies more than (1ε) fraction of clauses

73

Proof systems viewpoint

- k-SAT NP-hard ⇒ for any language L ∈
 NP proof system of form:
 - given x, compute reduction to k-SAT: ϕ_x
 - expected proof is satisfying assignment for ϕ_{x}
 - verifier picks random clause ("local test") and checks that it is satisfied by the assignment
 - $x \in L \Rightarrow Pr[verifier accepts] = 1$
 - $x \notin L \Rightarrow Pr[verifier accepts] < 1$

74

Proof systems viewpoint

- MAX-k-SAT with gap ε NP-hard ⇒ for any language L ∈ NP proof system of form:
 - given x, compute reduction to MAX-k-SAT: ϕ_x
 - expected proof is satisfying assignment for ϕ_x
 - verifier picks random clause ("local test") and checks that it is satisfied by the assignment
 - $x \in L \Rightarrow Pr[verifier accepts] = 1$

$$x \notin L \Rightarrow \Pr[\text{verifier accepts}] \leq (1 - \varepsilon)$$

– can repeat O(1/ ϵ) times for error < $\frac{1}{2}$

Proof systems viewpoint

• can think of reduction showing k-SAT NP-hard as designing a proof system for NP in which:

- verifier only performs local tests

- can think of reduction showing MAX-k-SAT with gap ε NP-hard as designing a proof system for NP in which:
 - verifier only performs local tests
 - invalidity of proof* evident all over: "holographic proof" and an ϵ fraction of tests notice such invalidity

PCP

- Probabilistically Checkable Proof (PCP) permits novel way of verifying proof:
 - pick random local test
 - query proof in specified k locations
 - accept iff passes test
- fancy name for a NP-hardness reduction

PCP

- **PCP[r(n),q(n)]**: set of languages L with p.p.t. verifier V that has (r, q)-restricted access to a string "proof"
 - V tosses O(r(n)) coins
 - V accesses proof in O(q(n)) locations
 - (completeness) $x \in L \Rightarrow \exists$ proof such that $Pr[V(x, proof) \ accepts] = 1$
 - (soundness) x ∉ L ⇒ \forall proof*

 $\Pr[V(x, proof^*) \text{ accepts}] \leq \frac{1}{2}$

78

PCP

• Two observations:

- PCP[1, poly n] = NP proof? - PCP[log n, 1] ⊂ NP

proof?

The PCP Theorem (AS, ALMSS): PCP[log n, 1] = NP.

PCP

<u>Corollary</u>: MAX-k-SAT is NP-hard to approximate to within some constant ε .

- using PCP[log n, 1] protocol for, say, VC
- enumerate all $2^{O(\log n)} = poly(n)$ sets of queries
- construct a k-CNF φ_i for verifier's test on each
 note: k-CNF since function on only k bits
- "YES" VC instance \Rightarrow all clauses satisfiable
- "NO" VC instance ⇒ every assignment fails to satisfy at least ½ of the $φ_i$ ⇒ fails to satisfy an $ε = (\frac{1}{2})2^{-k}$ fraction of clauses.