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Graphs and vertex colorings

A graph G = (V, E).
The vertex set: V.
The edge set E consists of subsets of V of cardinality 2.

.

(tradiƟonal) vertex coloring: an assignment of colors (i.e., posiƟve
integers) to the verƟces such that no two adjacent verƟces get the
same color

.
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Unique-maximum coloring

Def. A unique-maximum coloring of G = (V, E) with k colors is a
funcƟon C : V → {1, . . . , k} such that for each simple path p in G the
maximum color assigned to verƟces of p occurs in exactly one vertex
of p.

Given a graph G, the minimum k for which G has a unique-maximum
coloring with k colors is called the unique-maximum chromaƟc
number of G, denoted by χum(G).

In the literature, it is also known as:

vertex ranking
(Iyer, Ratliff, Vijayan, 1988)

ordered coloring
(Katchalski, McCuaig, Seager, 1995)
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MoƟvaƟon for unique-maximum coloring

parallel Cholesky decomposiƟon of matrices (Liu, 1990)

planning efficient assembly of products in manufacturing systems
(Iyer, Ratliff, Vijayan, 1988)

In general, the unique-maximum coloring problem can model
situaƟons where interrelated tasks have to be accomplished fast in
parallel (assembly from parts, parallel query opƟmizaƟon in
databases, etc.)

worst-case complexity of finding local opƟma in neighborhood
structures (Llewellyn, Tovey, Trick, 1989)
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Conflict-free coloring for paths of graphs

Def. A conflict-free coloring of G = (V, E) with k colors is a funcƟon
C : V → {1, . . . , k} such that for each simple path p in G there is a
vertex v in p, such that C(v) 6= C(v′), for every other vertex v′ of p
(i.e., C(v) occurs uniquely in p).

Given a graph G, the minimum k for which G has a conflict-free
coloring with k colors is called the conflict-free chromaƟc number of
G, denoted by χcf(G).

(Even, Lotker, Ron, Smorodinsky, 2003;
in a more general seƫng)

(CF colorings of a graph G) ⊇ (UM colorings of a graph G)
and thus
χcf(G) ≤ χum(G)
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MoƟvaƟon for conflict-free coloring

(Even, Lotker, Ron, Smorodinsky, 2003)

• Cellular networks consist of fixed posiƟon base staƟons (or
antennas) that emit at a specific frequency, andmoving agents.

• Each moving agent has a range of communicaƟon that can be
modeled by a shape (like a disk). The range includes a subset S of the
base staƟons. We want each such S to contain a base staƟon with
unique frequency in S.

• Model: base staƟons→ points, frequencies→ colors

• The frequency spectrum is expensive. Therefore, we try to
minimize frequency use, i.e., reuse frequencies as much as possible.
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ProperƟes – separators and UM colorings

Prop. If G is connected then in any UM coloring of G the maximum
color occurs uniquely.

Def. NotaƟon: G− S: deleƟon of verƟces in S ⊆ V from G

Def. A subset S ⊆ V is a separator of a connected graph G = (V, E) if
G− S is disconnected or empty. A separator S is inclusion minimal if
no strict subset S′ ⊂ S is a separator.

Prop. Given a connected graph G and a UM coloring C of it, consider
the set of verƟces U which are colored with uniquely occurring colors
in C. Then U is a separator of G.

Close relaƟon between separators and UM colorings.
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Are there graphs with different χum and χcf?
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Are there graphs with different χum and χcf?

Yes, here is a recursive construcƟon:

H0 is the single vertex graph: .

Hk (for k > 0) consists of:

.

.K2k+1−1.K2k+1−1

.Hk−1

.Hk−1

.Hk−1

.Hk−1 .Hk−1

.Hk−1

.Hk−1
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χcf(Hk) and χum(Hk)

Prop. χcf(Hk) = 2k+1 − 1.

Prop. 2k+2 − 2k− 3 ≤ χum(Hk) ≤ 2k+2.

As a result:

2k+2 − 2k− 3
2k+1 − 1

≤ χum(Hk)

χcf(Hk)
≤ 2k+2

2k+1 − 1

and thus

lim
k→∞

χum(Hk)

χcf(Hk)
= 2.
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Bounding χum(G) by a funcƟon of χcf(G)

We use the following lemma from Katchalski, McCuaig, Seager, 1995:
“If the largest path subgraph of G is Pk, then χum(G) ≤ k.”
and the following from Even, Lotker, Ron, Smorodinsky, 2003:
χcf(Pn) = 1+ blog2 nc.

Prop. For every graph G, χum(G) ≤ 2χcf(G) − 1.

Proof.
Set j = χcf(G). Since G is j-CF-colorable, every subgraph of it is also
j-CF-colorable, and in parƟcular its longest path subgraph. This
implies that the longest path subgraph in G has at most 2j − 1
verƟces. Therefore, by the above lemma, χum(G) ≤ 2j − 1.
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ComputaƟonal complexity of UM and CF coloring

UM GÙ�Ö« CÊ½ÊÙ®Ä¦ has been proven NP-complete
(Pothen, 1988; Llewellyn, Tovey, Trick, 1989)

polynomial Ɵme cerƟficate not as trivial as in GÙ�Ö« CÊ½ÊÙ®Ä¦,
because there can be number of paths exponenƟal on n; however,
the relaƟon between separators and UM colorings can help us to find
a polynomial Ɵme cerƟficate, i.e., the following problem is in P:

C�Ùã®¥®��ã� UM GÙ�Ö« CÊ½ÊÙ®Ä¦: Given a graph G and a coloring C
of its verƟces, is C a unique-maximum vertex coloring of G?

The situaƟon is very different for CF coloring. Consider the cerƟficate
problem:

C�Ùã®¥®��ã� CF GÙ�Ö« CÊ½ÊÙ®Ä¦: Given a graph G and a coloring C of
its verƟces, is C a conflict-free vertex coloring of G?

We will prove that this problem is not in P, unless coNP = P.

In fact, we are going to prove that C�Ùã®¥®��ã� CF GÙ�Ö« CÊ½ÊÙ®Ä¦ is
coNP-complete.
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The situaƟon is very different for CF coloring. Consider the cerƟficate
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CoNP-completeness of CF cerƟficate

(a) C�Ùã®¥®��ã� CF GÙ�Ö« CÊ½ÊÙ®Ä¦ is in coNP because one can check
that a coloring of a given graph is not conflict-free in polynomial Ɵme
if given a path in which there is no vertex with a uniquely occurring
color in the path.

(b) We show CoNP-hardness by a reducƟon from the complement of
the Hamiltonian path problem. For every graph G, we are going to
construct in polynomial Ɵme a graph G∗ and a vertex coloring C of G∗

such that:

G has no Hamiltonian path
if and only if

C is a conflict-free coloring of G∗
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Them×m grid graph

Def. Anm×m grid is a graph, denoted by Gm, with vertex set
{0, . . . ,m− 1} × {0, . . . ,m− 1} and edge set
{{(x1, y1), (x2, y2)} | |x1 − x2|+ |y1 − y2| ≤ 1}

In a standard drawing of the grid graph, vertex (x, y) is drawn at point
(x, y) in the plane.

.

χum(Gm) = ?, χcf(Gm) = ?
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A simple upper bound on χum(Gm)

.
.0

.m2

.m

.m2
.m

χum(Gm)

≤ m+m/2+ χum(Gm/2)

χum(Gm) ≤ 3m

Best known upper bound on χum(Gm) (from Bar-Noy, Ch., Lampis,
Mitsou, Zachos, 2009) is roughly 2.5m, using more intricate
separators.
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Method for proving a lower bound on χum(Gm)

Reminder: Given a connected graph G and a UM coloring C of it,
consider the set of verƟces U which are colored with uniquely
occurring colors in C. Then U is a separator of G.

Thus, we can reason about a lower bound by reasoning about
separators: examine cases on the size and shape of the separator
formed by the highest colors of an opƟmal coloring and then, for
each case, argue that the size of the separator plus the
unique-maximum chromaƟc number of one of the remaining
components is higher than a desired lower bound.

.
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Our improved lower bound on χum(Gm)

Best known lower bound before:

Prop. Form ≥ 2, χum(Gm) ≥ 3
2m.

(Bar-Noy, Ch., Lampis, Mitsou, Zachos, 2009)

We improve it to:

Prop. Form ≥ 2, χum(Gm) ≥ 5
3m− o(m).

Probably, 5m/3 is the limit of our method.
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What about χcf(Gm)?

We know that χcf(Gm) ≤ χum(Gm).

We prove χcf(Gm) can not be a lot less than χum(Gm):

Thm. For everym ≥ 1, χcf(Gm) ≥ χum(Gbm/2c).

Proof using two variaƟons of a game played on a graph by two
players, that captures properƟes of the two chromaƟc numbers.

Corollary. Form ≥ 2, χcf(Gm) ≥ 5
6m− o(m).
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Further work and open problems

properƟes of conflict-free coloring (monotonicity under minors
maybe?)

Ɵghten the gap between χum and χcf in general graphs

Ɵghten the gap between lower and upper bound on χum(Gm)
(1.666m lower bound, ≈ 2.5m upper bound)

Ɵghten the gap between χum(Gm) and χcf(Gm)

UM and CF colorings of general hypergraphs and of tree graphs w.r.t.
paths (joint work with Balázs Keszegh and Dömötör Pálvölgyi)

list conflict-free coloring (joint work with Shakhar Smorodinsky)

Thank you!
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