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Disk graphs

A disk graph is a the intersection graph of disks in the plane.
That is, we can represent each vertex by a disk in the plane such
that the vertices are adjacent iff the corresponding disks intersect.
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If we can take all the disks of the same radius then we speak of a
unit disk graph



Other dimensions

A d-ball graph is the intersection graph of balls in d-dimensional
space. A d-unit ball graph is the intersection graph of unit-radius
balls in d-dimensional space.

When d = 1 we speak of interval graphs resp. unit interval graphs.



Segment graphs

A segment graph is the intersection graph of line segments in the
plane.
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Polygon graphs

Let P be a convex polygon. A P-translates graph is an intersection
graph of translates of P, and a P-homothets graph is an
intersection graph of scaled translates of P.
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Dot product graphs

A graph G is a k-dot product graph if there are vectors
v1, . . . , vn ∈ Rk such that vT

i vj ≥ 1 iff ij ∈ E (G ).
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1-dot product graphs are also called threshold graphs.



Part II: Integer representations



Every disk graph has an integer representation

G is a disk graph iff we can find (x1, y1, r1, . . . , xn, yn, rn) ∈ R3n

such that

(xi − xj)
2 + (yi − yj)

2 ≤ (ri + rj)
2, for all ij ∈ E (G ),

(xi − xj)
2 + (yi − yj)

2 > (ri + rj)
2, for all ij 6∈ E (G ).

By keeping the rs fixed and scaling the xs and ys by a scalar
smaller than but very very close to 1, we can make sure equality is
never attained in ≤.

Next, we “perturb” all variables very very slightly to get a rational
vector (x1, y1, r1, . . . , xn, yn, rn) ∈ Q3n.

Finally, we can multiply everything by the product of the
denominators to get an integer representation
(x1, y1, r1, . . . , xn, yn, rn) ∈ Z3n.



Every disk graph has an integer representation

G is a disk graph iff we can find (x1, y1, r1, . . . , xn, yn, rn) ∈ R3n

such that

(xi − xj)
2 + (yi − yj)

2 ≤ (ri + rj)
2, for all ij ∈ E (G ),

(xi − xj)
2 + (yi − yj)

2 > (ri + rj)
2, for all ij 6∈ E (G ).

By keeping the rs fixed and scaling the xs and ys by a scalar
smaller than but very very close to 1, we can make sure equality is
never attained in ≤.

Next, we “perturb” all variables very very slightly to get a rational
vector (x1, y1, r1, . . . , xn, yn, rn) ∈ Q3n.

Finally, we can multiply everything by the product of the
denominators to get an integer representation
(x1, y1, r1, . . . , xn, yn, rn) ∈ Z3n.



Every disk graph has an integer representation

G is a disk graph iff we can find (x1, y1, r1, . . . , xn, yn, rn) ∈ R3n

such that

(xi − xj)
2 + (yi − yj)

2 ≤ (ri + rj)
2, for all ij ∈ E (G ),

(xi − xj)
2 + (yi − yj)

2 > (ri + rj)
2, for all ij 6∈ E (G ).

By keeping the rs fixed and scaling the xs and ys by a scalar
smaller than but very very close to 1, we can make sure equality is
never attained in ≤.

Next, we “perturb” all variables very very slightly to get a rational
vector (x1, y1, r1, . . . , xn, yn, rn) ∈ Q3n.

Finally, we can multiply everything by the product of the
denominators to get an integer representation
(x1, y1, r1, . . . , xn, yn, rn) ∈ Z3n.



Every disk graph has an integer representation

G is a disk graph iff we can find (x1, y1, r1, . . . , xn, yn, rn) ∈ R3n

such that

(xi − xj)
2 + (yi − yj)

2 ≤ (ri + rj)
2, for all ij ∈ E (G ),

(xi − xj)
2 + (yi − yj)

2 > (ri + rj)
2, for all ij 6∈ E (G ).

By keeping the rs fixed and scaling the xs and ys by a scalar
smaller than but very very close to 1, we can make sure equality is
never attained in ≤.

Next, we “perturb” all variables very very slightly to get a rational
vector (x1, y1, r1, . . . , xn, yn, rn) ∈ Q3n.

Finally, we can multiply everything by the product of the
denominators to get an integer representation
(x1, y1, r1, . . . , xn, yn, rn) ∈ Z3n.



Every disk graph has an integer representation



Integer representations of the other graphs classes

Very similar “perturbation and inflation” arguments apply to unit
disk graphs, segment graphs, dot-product graphs, ...



Why do we care about integer representations?

I Algorithms often need “geometric information” to capitalize
on the fact we are dealing with a disk/segment/dot product
graph.

I NP-membership of the recognition problem: smallish integers
give a “polynomial certificate”.

I If the integers are really small then we can store G using less
bits than an adjacency matrix.

I Visualization: How precisely do we need to draw?
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Integer representations of planar graphs

To draw a planar graph in the plane with straight lines we do not
need too much space:

Theorem. [Fraysseix-Pach-Pollack,1988] Every planar graph on
n vertices has a straight-line embedding with its vertices a subset
of the grid {1, . . . , 2n − 4} × {1, . . . , n − 2}.



Integer representations of unit square graphs

Theorem. [Czyzowicz et al, 1997] Intersection graphs of
same-size squares can be represented with all corner points on a
O(n2)× O(n2)-grid.



Integer representations of P-translate graphs

Theorem. [M+Van Leeuwen+Van Leeuwen, 2010+]
Let P be a convex polygon (whose corners have rational
coordinates).

(i) If P is a paralellogram then any P-translates graph can be
represented on a O(n2)× O(n2)-grid, and this is sharp (up to
the constant inside the O(.)).

(ii) If P is not a parallelogram then any P-translates graph can be
represented with all corner points on a 2O(n) × 2O(n)-grid, and
this is sharp (up to the constant inside the O(.)).

NOTE: while 2O(n) is pretty big, we need only O(n) bits to store
each coordinate.



Integer representations of P-translate graphs



Integer representations of scaled polygon graphs

Theorem. [M+Van Leeuwen+Van Leeuwen, 2010+]
Fix a convex polygon P (whose corners have rational coordinates).
Any P-homothets graph can be represented with all corner points
on a 2O(n) × 2O(n) grid, and this is sharp (up to the constant inside
O(.)).



Some definitions

Let fDG(n) denote the least k such that every disk graph on n
vertices can be represented by disks with centers ∈ {1, . . . , k}2 and
radii r1, . . . , rn ∈ {1, . . . , k}.

Similarly, let fUDG(n) denote the least k such that every unit disk
graph on n vertices can be represented by disks with centers on
{1, . . . , k}2, all of equal radius r ∈ {1, . . . , k}.

Let fSEG(n) denote the least k such that all segment graphs on n
vertices can be represented by segments with endpoints in
{1, . . . , k}2.

Let fd-DPG(n) denote the least k such that all d-dot product
graphs can be represented by vectors in v1, . . . , vn ∈ {−k, . . . , k}d
together with a threshold t ∈ {1, . . . , k} such that ij ∈ E iff
vT
i vj ≥ t.
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A question

In his book “Efficient representation of graphs” Spinrad asks the
following question(s):

Question. [Spinrad, 2003] How large are fDG(n), fUDG(n),

fd-DPG(n)? Are they polynomially bounded? Or at least by 2O(nK )

for some constant K?

Van Leeuwen+Van Leeuwen’06 put it more strongly:

Polynomial Representation Hypothesis.[Van Leeuwen+Van
Leeuwen, 2006]

fDG(n) = 2O(nK ) for some constant K .
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The Polynomial Representation Hypothesis is false

We will disprove the Polynomial Representation Hypothesis:

Theorem. [McDiarmid+M, 2010+] fDG(n) = 22Θ(n)
.

Theorem. [McDiarmid+M, 2010+] fUDG(n) = 22Θ(n)
.

Theorem. [Kang+M, 2010+] fd-DPG(n) = 22Θ(n)
for all d ≥ 2.

NOTE: here f (n) = 22Θ(n)
means there exist c1, c2 > 0 such that

22c1n ≤ f (n) ≤ 22c2n
.



Integer representations of segment graphs

Theorem. [Kratochv́ıl+Matoušek,1994] fSEG(n) = 22Ω(
√

n)
.

We improve this as follows:

Theorem. [McDiarmid+M, 2010+] fSEG(n) = 22Θ(n)
.



Standard encoding of rationals

A usual convention is that a rational number is stored in the
memory of a computer as a pair of integers that are relatively
prime.

If n is an integer then its bit-size is:

size(n) = 1 + dlog2(|n|)e.

If q = n
m is a rational with n,m relatively prime then the bit size is

size(q) = size(n) + size(m).



Implications for bit-size

The results on the previous slides imply (via a small amount of
work):

Corollary There exist disk/unit disk/segment/dot product graphs
for which any representation using rational coordinates needs
exponentially many bits, and exponentially many bits are always
enough.



Part III: recognition problems



Recognition problems

If C is some class of graphs, then the recognition problem for C is
the following decision problem:

INPUT: A graph G (in adjacency matrix form).
OUTPUT: ”YES” if G is a member of C,

and ”NO” otherwise.



Some results on recognition problems

For one dimensional objects it is usually easy:

Theorem. [Chvátal+Hammer, 1973] Threshold graph
recognition is linear.

Theorem. [Booth+Luecker, 1976] Interval graph recognition is
linear.

Theorem. [Corneil+Kamura, 1987] Unit interval graph
recognition is linear.



Some results on recognition problems in dimension two

Theorem. [Kratochv́ıl+Matoušek, 1989] Segment graph
recognition is NP-hard.

Theorem. [Breu+Kirkpatrick, 1998] Unit disk graph
recognition is NP-hard.

Theorem. [Hliněný+Kratochv́ıl, 2001] Disk graph recognition
is NP-hard.



Questions and answers

Conjecture. [Breu+Kirkpatrick,1998] k-unit ball recognition is
NP-hard for all k ≥ 2.

Theorem. [Kang+M,2010+] The B+K conjecture holds.

Question. [Fiduccia et al.,1998] What is the complexity of
k-dot product recognition for k ≥ 2?

Theorem. [Kang+M,2010+] k-dot product recognition is
NP-hard for all k ≥ 2.

The proofs use a reduction to “simple stretchability” (to be
defined later on) and are very similar.
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Part IV: Line arrangements



Line arrangements

A line arrangement L = (`1, . . . , `n) is a family of lines in the plane
R2.

A line arrangement is simple if every two lines intersect, and no
point lies on more than two lines.



Pseudoline arrangements

A pseudoline arrangement L = (`1, . . . , `n) is a family of
continuous curves in the plane that satisfy some regularity
conditions.

A pseudoline arrangement is simple if every two pseudolines
intersect and no point lies on more than two pseudolines.



Oriented (pseudo-) line arrangements

Let L = (`1, . . . , `n) be a (pseudo-) line arrangement.

In an orientation of L, we define one of the two components of
R2 \ `i be the “plus side” (denoted `+

i ) and the other the “minus
side” (denoted `−i ).

For convenience, we shall only deal with oriented (pseudo-) line
arrangements from now on.



Combinatorial description

The sign vector wrt. L = (`1, . . . , `n) associated with a point
p ∈ R2 is a vector σ(p) ∈ {−, 0,+}n, with:

(σ(p))i =


− if p ∈ `−i ,
0 if p ∈ `i ,
+ if p ∈ `+

i .

The combinatorial description of L is the set of sign vectors

D(L) := {σ(p) : p ∈ R2}.

If D(L) = D(L′) the we say that L and L′ are isomorphic.



Example sign vectors

(−, +)

(−,−)

(0,−)

(0, +)

(+
, 0)

(−
, 0)

(+, +)

(0, 0)

(+,−)

l
−
2

l+
2

l+
1

l
−
1



Stretchability

We say a pseudoline arrangement is stretchable if it is isomorphic
to a line arrangement.

An example of a non-stretchable pseudoline arrangement:

(non-stretchability follows from Pappus’ theorem)



The Von Staudt sequences

Von Staudt (“Geometrie der Lage”, 1847) invented a way to
encode arithmetic operations in line arrangements.

Starting from three lines in general position and one point not on
these lines, we “construct” a line arrangement by repeatedly
adding a line through two existing (intersection) points.



The Von Staudt sequences – one

P∞

P

P0



The Von Staudt sequences – one

P∞P1

P

P0



The Von Staudt sequences – addition

Px

P

P∞PyP0



The Von Staudt sequences – addition

Px Py
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The Von Staudt sequences – addition

Px Py
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The Von Staudt sequences – addition

P∞PyP0 Px

P



The Von Staudt sequences – addition

P∞Py Px+yP0 Px

P



Von Staudt sequences – multiplication

Px

P

P∞PyP0



Von Staudt sequences – multiplication

P∞PyP0 P1 Px

P



Von Staudt sequences – multiplication
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Von Staudt sequences – multiplication

P∞PyP0 P1 Px
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Von Staudt sequences – multiplication

P∞PyP0 P1 Px

P



Von Staudt sequences – multiplication

P∞PxyP0 P1 Px Py

P



Remarks

I There are also Von Staudt sequences for x − y and x/y .

I Thus, we can “construct” Pq for any rational number q ∈ Q.

I For instance, to get 3/2 we first make P1, then P1+1, then
P1+1+1 and finally P(1+1+1)/(1+1).



The cross ratio

For points A,B,C ,D on a line ` the cross ratio is defined as

cr(A,B,C ,D) :=
length(AB) · length(CD)

length(AC ) · length(BD)
.

Here length(.) denotes the signed length, i.e. minus the length if
the second point lies to the left of the first.

l

A
B

C D



The cross ratio and Von Staudt

Theorem. [Von Staudt] Let q ∈ Q be a rational number, and
consider a Von Staudt sequence for q. Then:

cr(P0,Pq,P1,P∞) = q.

(Moreover, this property is “preserved under isomorphisms”.)

The proof (and the precise definition of the Von Staudt
constructions) is elementary, but not for 25 minute talks. So we
skip it.



Two algorithmic decision problems

Existential theory of the reals:

INPUT: A set of polynomial equalities and
strict inequalities with
integer coefficients.

OUTPUT: ”YES” if there is a simultaneous
(real) solution, and ”NO” otherwise.

Simple stretchability:

INPUT: A combinatorial description D

of a simple pseudoline arrangement.
OUTPUT: ”YES” if D is stretchable,

and ”NO” otherwise.



Mnëv’s universality theorem

Using Von Staudt sequences, Mnëv proved a deep topological
theorem on “realization spaces of line arrangements”. As a
corollary to this result he also obtained:

Theorem. [Mnëv, 1985] The existential theory of the reals is
polynomially equivalent to simple stretchability.

Corollary. Simple stretchability is NP-hard.

This last corollary was also obtained in a more direct way by Shor
(1991). He reduced some SAT-variant using Pappus’ and
Desargues’ theorems.



Part IV: Proof sketches



Another definition

Let span(L) denote the ratio of the furthest distance between two
intersection points of lines in L to the smallest distance between
two (distinct) intersection points.



The lower bound on fUDG – very brief proof sketch

Proof plan:

1. For r ∈ N, we construct a set S ⊆ {−,+}O(r) with |S | = O(r)
such that whenever S ⊆ D(L) then span(L) ≥ 22r

.

2. We construct a unit disk graph G on O(r) vertices, such that
in any realization the lines `i := {x :‖x − v2i−1 ‖=‖x − v2i ‖}
induce a line arrangement with S ⊆ D(L). (here vi is the
center of the disk representing vertex i).

3. We apply some elementary computations to express span(L)
in terms of the coordinates of the vi , and derive that at least
one of them is ≥ 22r

.



The lower bound on fUDG – slightly more detail

Let L be a line arrangement that arises as a a Von Staudt
sequence for P

22r+1 with O(r) lines in total.

Such an L exists: First we build P1, then P1+1, then P2·2, then
P4·4 etc.

Recall that cr(P0,P22r+1 ,P1,P∞) equals the product of two
segment lengths divided by the product of two other segment
lengths.

Hence span(L) ≥
√

22r+1 = 22r
.

Thus, by Von Staudt’s theorem, any line arrangement L′

isomorphic to L has span(L′) ≥ 22r
.

The rest of the construction in part 1 (to get the required
S ⊆ D(L)) is rather technical so we skip it.

We also skip steps 2, 3 which are technical as well.
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segment lengths divided by the product of two other segment
lengths.

Hence span(L) ≥
√

22r+1 = 22r
.

Thus, by Von Staudt’s theorem, any line arrangement L′

isomorphic to L has span(L′) ≥ 22r
.

The rest of the construction in part 1 (to get the required
S ⊆ D(L)) is rather technical so we skip it.

We also skip steps 2, 3 which are technical as well.



Proof of the lower bounds on fDG, fSEG, fd-DPG

For disk, segment and dot-product graphs, we use the same
S ⊆ {−,+}O(r) together with constructions for “embedding” it
into a disk/segment/dot-product graph.



Proof of the upper bound on fUDG

Lemma. [Grigor’ev+Vorobjov,1985] For each d ,K ∈ N there
exists a constant C = C (d ,K ) such that the following hold.
Suppose that h1, . . . , hk are polynomials in n variables with integer
coefficients, and degrees deg(hi ) < d . Suppose all coefficients are
less than K in absolute value. If there exists a solution
(x1, . . . , xn) ∈ Rn of the system {h1 ≥ 0, . . . , hk ≥ 0}, then there
also exists one with |x1|, . . . , |xn| ≤ 2log k·Cn

.



The proof of the upper bound on fUDG, continued

Consider the set of inequalities:

(xi − xj)
2 + (yi − yj)

2 ≤ (r − 3)2, for all ij ∈ E (G ),
(xi − xj)

2 + (yi − yj)
2 ≥ (r + 3)2, for all ij 6∈ E (G ),

r ≥ 10.

It has a solution (just inflate the coordinates and radii of some
realization of G ).

Hence, by G+V’85 there is also a real solution with all coordinates
≤ 22cn

for some constant c .
(we choose c such that

(
log
(n

2

))
· Cn < 2cn, for all n).



The proof of the upper bound, continued

We now set x ′i := bxic, y ′i := byic, r ′ := brc.
Elementary computations (which we skip) give for ij ∈ E (G ):

(x ′i − x ′j )
2 + (y ′i − y ′j )2 ≤ (r ′)2,

and for ij 6∈ E (G ) we find (x ′i − x ′j )
2 + (y ′i − y ′j )2 > (r ′)2. �



Proof sketch for NP-hardness of k-unit ball graph
recognition and dot product recognition

Given a combinatorial description D(L) of a simple pseudoline
arrangement L, we construct the adjacency matrix of a graph G
on O(|L|2) vertices (in polynomial time), such that G is a k-unit
ball/k-dot product graph iff L is stretchable.
The construction is very similar to what we did in the lower bound
of the integer representations proof.



Part V: dot product representations of planar graphs



Dot product representations of planar graphs

Theorem. [Reiterman et al ’89, Fiduccia et al ’98] Every
forest is a 3-dot product graph.

Question. [Fiduccia et al, ’98] Is every planar graph a 3-dot
product graph?

Theorem. [Kang+M, 10+] Every planar graph is a 4-dot
product graph and there exist planar graphs that are not 3-product
graphs.
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The proof

That every planar graph is 4-dot product is a straightforward
consequence of results on the Colin de Verdiére parameter by
Kotlov+Lovász+Vempala 1997.

Let Gk consist of k disjoint copies of the following graph:

Then Gk is not 3-dot product for sufficiently large k.

We leave the proof as an exercise.
(Hint: use the spherical cosine rule and the Jordan curve theorem)
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Kotlov+Lovász+Vempala 1997.

Let Gk consist of k disjoint copies of the following graph:

Then Gk is not 3-dot product for sufficiently large k.

We leave the proof as an exercise.
(Hint: use the spherical cosine rule and the Jordan curve theorem)



The proof

That every planar graph is 4-dot product is a straightforward
consequence of results on the Colin de Verdiére parameter by
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Concluding remarks

I Storing coordinates is maybe not such a good idea.
Open problem: Find a more clever way to “encode the
geometry”.

I Open problem: membership in NP of recognition problems for
disk / unit disk / segment / dot product graphs.
(This will show that “existential theory of the reals” is in NP
also.)

I Further work: carry out same programme for other geometric
graph classes.

I Dot-product dimension of other graph classes.
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